
Cray XT™ Series Programming
Environment User's Guide
S–2396–20

© 2004–2007 Cray Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any form unless permitted by
contract or by written permission of Cray Inc.

The gnulicinfo(7) man page contains the Open Source Software licenses (the "Licenses"). Your use of this software release constitutes
your acceptance of the License terms and conditions.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

The Computer Software is delivered as "Commercial Computer Software" as defined in DFARS 48 CFR 252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided with Restricted
Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14
or DFARS 48 CFR 252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or disclosure by the
U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7013, as applicable.

Cray, LibSci, UNICOS and UNICOS/mk are federally registered trademarks and Active Manager, Cray Apprentice2,
Cray C++ Compiling System, Cray Fortran Compiler, Cray SeaStar, Cray SeaStar2, Cray SHMEM, Cray Threadstorm, Cray X1,
Cray X1E, Cray X2, Cray XD1, Cray XMT, Cray XT, Cray XT3, Cray XT4, CrayDoc, CRInform, Libsci, RapidArray, UNICOS/lc,
and UNICOS/mp are trademarks of Cray Inc.

AMD is a trademark of Advanced Micro Devices, Inc. Copyrighted works of Sandia National Laboratories include: Catamount/QK,
Compute Processor Allocator (CPA), and xtshowmesh. DDN is a trademark of DataDirect Networks. FFTW is Copyright © 2003
Matteo Frigo, Copyright © 2003 Massachusetts Institute of Technology. GCC is a trademark of the Free Software Foundation, Inc.
Linux is a trademark of Linus Torvalds. Lustre was developed and is maintained by Cluster File Systems, Inc. under the GNU
General Public License. MySQL is a trademark of MySQL AB. Opteron is a trademark of Advanced Micro Devices, Inc. PathScale
is a trademark of PathScale, Inc. PBS Pro is a trademark of Altair Grid Technologies. PETSc, Copyright, 1995-2004 University of
Chicago. The Portland Group and PGI are trademarks of STMicroelectronics. SUSE is a trademark of SUSE LINUX Products
GmbH, a Novell business. TotalView is a trademark of TotalView Technologies, LLC. UNIX, the “X device,” X Window System,
and X/Open are trademarks of The Open Group in the United States and other countries. All other trademarks are the property
of their respective owners.

New Features

Cray XT™ Series Programming Environment User's Guide S–2396–20

Cross compiler platform

Added support of a standalone, cross compiler machine for creating executables to be run on
Cray XT series systems (see Section 1.1, page 1).

ALPS Added support of ALPS (Application Level Placement Scheduler). ALPS is the application
launcher for CNL applications. For further information, see Section 1.2, page 1.

Create node lists by compute node attributes

Added support of the cnselect command. You can use cnselect to get a candidate list
of compute nodes based on node attributes you specify. You can then use this list to launch
applications on compute nodes with those characteristics. For further information see Section
1.2, page 1.

Target architecture

The target architecture (CNL or Catamount) is set automatically at log in. For further
information, see Section 2.2, page 9.

IRT Added IRT (Iterative Refinement Toolkit) to Cray XT-LibSci. You can use IRT as an efficient
alternative to standard LAPACK or ScaLAPACK linear equation solvers. For further
information, see Section 3.2, page 13.

ACML changes

The ACML module is no longer loaded as part of the default PrgEnv environment. For
further information, see Section 3.3, page 16.

PETSc Added support of PETSc (Portable, Extensible Toolkit for Scientific Computation). For further
information, see Section 3.5, page 18.

OpenMP Added support of OpenMP for PGI, PathScale, and GCC applications that are run on CNL
compute nodes. For further information, see Section 3.8, page 22.

CNL Added support of CNL. CNL is a compute node operating system; sites can use it as an
alternative to Catamount. For further information, see Chapter 4, page 23.

Unsupported PGI compiler command options

Added note that the PGI -mprof=mpi, -Mmpi, and -Mscalapack options are not supported
on Cray XT series systems (see Section 4.1.1.5, page 25).

Suppressing vectorization

Documented methods of suppressing vectorization in PGI applications (see Section 4.1.1.6,
page 25).

Lustre required for CNL applications

In CNL, only I/O to Lustre file systems is supported (see Section 4.2.2, page 27.

Resolving copy-on-write problems

Modified the Portals kernel to perform a partial copy of pages when a process forks a child.
The standard Linux fork() copy-on-write process can adversely affect Portals data transfers
(see Section 4.2.11, page 29).

Creating CNL or Catamount executables

Added modules that enable you to create CNL or Catamount executables, regardless of the
operating system running on the compute nodes. For further information, see Section 5.1,
page 39.

PGI compilers

Documented PGI Cluster Development Kit (CDK) options not supported on Cray XT series
systems. For further information, see Section 5.2.1, page 40.

GNU Fortran 95 compiler

Added support of the GNU Fortran 95 compiler. For further information, see Section 5.2.2,
page 42.

PathScale compilers

Added support of the PathScale C, C++, and Fortran compilers. For further information,
see Section 5.2.3, page 43.

Methods for getting node status

Added the xtprocadmin - A command, which generates a report showing node attributes.
Also enhanced the xtshowmesh and xtshowcabs reports. For further information, see
Chapter 6, page 47.

PBS Pro -l resource_type options

Documented changes in PBS Pro resource-type specifications (such as -l mppwidth
replacing -l size (see Section 9.2, page 68).

Trace reports about memory allocation and deallocation

Added the -tracemalloc option to the yod command to generate trace diagnostics for
malloc() and free() calls (see Section 10.1, page 73).

CrayPat sampling

Added support of CrayPat sampling (asynchronous) experiments (see Section 11.2.1, page 86).

Cray Apprentice2 desktop

Added support of Cray Apprentice2 running on a standalone Linux based machine (see
Section 11.3, page 88).

Rank placement method for CNL applications

Added support of the yod placement method (rank-sequential order) for CNL applications
(see Section 12.2.2, page 93).

Record of Revision

Version Description

1.0 December 2004
Draft documentation to support Cray XT3 early-production systems.

1.0 March 2005
Draft documentation to support Cray XT3 limited-availability systems.

1.1 June 2005
Supports Cray XT3 systems running the Cray XT3 Programming Environment 1.1
and UNICOS/lc 1.1 releases.

1.2 August 2005
Supports Cray XT3 systems running the Cray XT3 Programming Environment 1.2
and UNICOS/lc 1.2 releases.

1.3 November 2005
Supports Cray XT3 systems running the Cray XT3 Programming Environment 1.3
and UNICOS/lc 1.3 releases.

1.4 April 2006
Supports Cray XT3 systems running the Cray XT3 Programming Environment 1.4
and UNICOS/lc 1.4 releases.

1.5 August 2006
Supports limited availability (LA) release of Cray XT series systems running the
Cray XT series Programming Environment 1.5 and UNICOS/lc1.5 releases.

1.5 November 2006
Supports general availability (GA) release of Cray XT series systems running the
Cray XT series Programming Environment 1.5 and UNICOS/lc 1.5 releases.

2.0 June 2007
Supports limited availability (LA) release of Cray XT series systems running the
Cray XT series Programming Environment 2.0 and UNICOS/lc 2.0 releases.

2.0 October 2007
Supports general availability (GA) release of Cray XT series systems running the
Cray XT series Programming Environment 2.0 and UNICOS/lc 2.0 releases.

S–2396–20 i

Contents

Page

Preface xi

Accessing Product Documentation xi

Conventions . xii

Reader Comments . xiii

Cray User Group . xiii

Introduction [1] 1

The Cray XT Series System Environment 1

The Cray XT Series Programming Environment 1

Documentation Included with This Release 4

Setting Up the User Environment [2] 7

Setting Up a Secure Shell . 7

RSA Authentication with a Passphrase 8

RSA Authentication without a Passphrase 9

Using Modules . 9

Modifying the PATH Variable . 11

Lustre File System . 11

Libraries and APIs [3] 13

C Language Run Time Library . 13

Cray Scientific Library . 13

BLAS and LAPACK . 13

ScaLAPACK and BLACS . 14

Example 1: Running a ScaLAPACK application 14

Example 2: Running an ScaLAPACK hybrid application 15

Iterative Refinement Toolkit . 15

S–2396–20 iii

Cray XT™ Series Programming Environment User’s Guide

Page

SuperLU . 16

AMD Core Math Library . 16

FFTW Libraries . 17

PETSc Library . 18

Cray MPICH2 Message Passing Library 18

Cray SHMEM Library . 20

OpenMP Library . 22

Programming Considerations [4] 23

General Programming Considerations 23

PGI Compilers . 23

Default MPICH2 and SHMEM Libraries 23

Unsupported C++ Header Files 24

Restrictions on Large Data Objects 24

The FORTRAN STOP Message 24

Unsupported Compiler Command Options 25

Suppressing Vectorization . 25

PGI Debugger . 25

PathScale Fortran Compiler . 25

Little-endian Support . 26

Portals Message Size Limit . 26

Shared Libraries . 26

CNL Programming Considerations 26

CNL glibc Functions . 26

I/O Support . 27

External Connectivity . 28

Timing Functions . 28

Signal Support . 28

Core Files . 29

Page Size . 29

Resource Limits . 29

iv S–2396–20

Contents

Page

One Application Per Node Limitation 29

Parallel Programming Models . 29

Modified Copy-on-write Process 29

Catamount Programming Considerations 30

Catamount glibc Functions . 30

I/O Support . 31

Improving Fortran I/O Performance 32

Improving C++ I/O Performance 32

Improving stdio Performance 33

Improving Large File, Sequential I/O Performance 33

Using Stride I/O Functions to Improve Performance 34

Reducing Memory Fragmentation 34

External Connectivity . 35

Timing Functions . 35

Signal Support . 36

Core Files . 36

Page Size . 37

Resource Limits . 37

Parallel Programming Models . 37

Compiler Overview [5] 39

Setting Your Target Architecture . 39

Using Compilers . 40

Using PGI Compilers . 40

Using GNU Compilers . 42

Using PathScale Compilers . 43

Getting Compute Node Status [6] 47

Running CNL Applications [7] 53

aprun Command . 53

apstat Command . 55

S–2396–20 v

Cray XT™ Series Programming Environment User’s Guide

Page

cnselect Command . 55

Memory Available to CNL Applications 56

Launching an MPMD Application 57

Managing Compute Node Processors from an MPI Program 57

Input and Output Modes under aprun 58

Signal Handling under aprun . 58

Running Catamount Applications [8] 59

yod Command . 59

cnselect Command . 60

Memory Available to Catamount Applications 61

Launching an MPMD Application 62

Managing Compute Node Processors from an MPI Program 64

Input and Out Modes under yod . 64

Signal Handling under yod . 64

Associating a Project or Task with a Job Launch 65

Using PBS Pro [9] 67

Creating Job Scripts . 67

Submitting Batch Jobs . 68

Using aprun with qsub . 68

Using yod with qsub . 69

Terminating Failing Processes in an MPI Program 69

Getting Jobs Status . 70

Removing a Job from the Queue . 71

Debugging an Application [10] 73

Troubleshooting Catamount Application Failures 73

Using the TotalView Debugger . 74

Debugging an Application . 74

Debugging a Core File . 77

Attaching to a Running Process 78

vi S–2396–20

Contents

Page

Altering Standard I/O . 79

TotalView Limitations for Cray XT Series Systems 81

Using the GNU gdb Debugger . 81

Performance Analysis [11] 83

Using the Performance API . 83

Using the High-level PAPI Interface 83

Using the Low-level PAPI Interface 84

Using the Cray Performance Analysis Tool 84

Tracing and Sampling Experiments 86

Using Cray Apprentice2 . 88

Optimization [12] 91

Using Compiler Optimization Options 91

Optimizing Applications Running on Dual-core Processors 92

MPI and SHMEM Applications Running under Catamount 92

MPI and SHMEM Applications Running under CNL 93

Example CNL Applications [13] 95

Example 3: Basics of running a CNL application 95

Example 4: Basics of running an MPI application 96

Example 5: Running an MPI work distribution program 98

Example 6: Combining results from all processors using MPI 100

Example 7: Using the Cray shmem_put function 102

Example 8: Using the Cray shmem_get function 104

Example 9: Turning off the PGI FORTRAN STOP message 105

Example 10: Running an MPI/OpenMP program 106

Example 11: Using a PBS Pro job script 107

Example 12: Running an MPI program under PBS Pro 108

Example 13: Running an MPI_REDUCE program under PBS Pro 109

Example 14: Using a script to create and run a batch job 110

Example 15: Running multiple sequential applications 111

S–2396–20 vii

Cray XT™ Series Programming Environment User’s Guide

Page

Example 16: Running multiple parallel applications 113

Example 17: Using the high-level PAPI interface 114

Example 18: Using the low-level PAPI interface 115

Example 19: Using basic CrayPat functions 117

Example 20: Using hardware performance counters 124

Example Catamount Applications [14] 133

Example 21: Basics of running a Catamount application 133

Example 22: Basics of running an MPI application 134

Example 23: Running an MPI work distribution program 136

Example 24: Combining results from all processors using MPI 137

Example 25: Using the Cray shmem_put function 139

Example 26: Using the Cray shmem_get function 141

Example 27: Turning off the PGI FORTRAN STOP message 142

Example 28: Using dclock() to calculate elapsed time 143

Example 29: Specifying a buffer for I/O 144

Example 30: Changing default buffer size for I/O to file streams 145

Example 31: Improving performance of stdout 147

Example 32: Using a PBS Pro job script 148

Example 33: Running an MPI program under PBS Pro 149

Example 34: Running an MPI_REDUCE program under PBS Pro 149

Example 35: Using a script to create and run a batch job 151

Example 36: Running multiple sequential applications 152

Example 37: Running multiple parallel applications 153

Example 38: Using xtgdb to debug a program 154

Example 39: Using the high-level PAPI interface 155

Example 40: Using the low-level PAPI interface 156

Example 41: Using basic CrayPat functions 158

Example 42: Using hardware performance counters 164

viii S–2396–20

Contents

Page

Appendix A glibc Functions Supported in CNL 181

Appendix B glibc Functions Supported in Catamount 187

Appendix C PAPI Hardware Counter Presets 193

Appendix D MPI Error Messages 199

Appendix E ALPS Error Messages 201

Appendix F yod Error Messages 203

Glossary 207

Index 209

Figures
Figure 1. TotalView Root Window 75

Figure 2. TotalView Process Window 76

Figure 3. Debugging a Core File 77

Figure 4. Attaching to a Running Process 78

Figure 5. Altering Standard I/O 80

Figure 6. Cray Apprentice2 Function Display 89

Tables
Table 1. Manuals and Man Pages Included with This Release 4

Table 2. setvbuf3f() Arguments 32

Table 3. PGI Compiler Commands 41

Table 4. GNU Compiler Commands 42

Table 5. PathScale Compiler Commands 44

Table 6. aprun versus qsub Options 68

Table 7. yod versus qsub Options 69

Table 8. RPCs to yod . 73

Table 9. Supported glibc Functions for CNL 181

S–2396–20 ix

Cray XT™ Series Programming Environment User’s Guide

Page

Table 10. Supported glibc Functions for Catamount 187

Table 11. PAPI Presets . 193

Table 12. MPI Error Messages . 199

Table 13. ALPS Error Messages . 201

Table 14. yod Error Messages . 203

x S–2396–20

Preface

The information in this preface is common to Cray documentation provided with
this software release.

Accessing Product Documentation

With each software release, Cray provides books and man pages, and in
some cases, third-party documentation. These documents are provided in the
following ways:

CrayDoc The Cray documentation delivery system that allows you to
quickly access and search Cray books, man pages, and in some
cases, third-party documentation. Access this HTML and PDF
documentation via CrayDoc at the following locations:

• The local network location defined by your system
administrator

• The CrayDoc public website: docs.cray.com

Man pages Access man pages by entering the man command followed by the
name of the man page. For more information about man pages,
see the man(1) man page by entering:

% man man

Third-party documentation

Access third-party documentation not provided through
CrayDoc according to the information provided with the
product.

S–2396–20 xi

http://docs.cray.com/

Cray XT™ Series Programming Environment User’s Guide

Conventions

These conventions are used throughout Cray documentation:

Convention Meaning

command This fixed-space font denotes literal items, such as file
names, pathnames, man page names, command names, and
programming language elements.

variable Italic typeface indicates an element that you will replace with a
specific value. For instance, you may replace filename with the
name datafile in your program. It also denotes a word or
concept being defined.

user input This bold, fixed-space font denotes literal items that the user
enters in interactive sessions. Output is shown in nonbold,
fixed-space font.

[] Brackets enclose optional portions of a syntax representation for
a command, library routine, system call, and so on.

... Ellipses indicate that a preceding element can be repeated.

name(N) Denotes man pages that provide system and programming
reference information. Each man page is referred to by its name
followed by a section number in parentheses.

Enter:

% man man

to see the meaning of each section number for your particular
system.

xii S–2396–20

Preface

Reader Comments

Contact us with any comments that will help us to improve the accuracy and
usability of this document. Be sure to include the title and number of the
document with your comments. We value your comments and will respond to
them promptly. Contact us in any of the following ways:

E-mail:
docs@cray.com

Telephone (inside U.S., Canada):
1–800–950–2729 (Cray Customer Support Center)

Telephone (outside U.S., Canada):
+1–715–726–4993 (Cray Customer Support Center)

Mail:
Customer Documentation
Cray Inc.
1340 Mendota Heights Road
Mendota Heights, MN 55120–1128
USA

Cray User Group

The Cray User Group (CUG) is an independent, volunteer-organized
international corporation of member organizations that own or use Cray Inc.
computer systems. CUG facilitates information exchange among users of Cray
systems through technical papers, platform-specific e-mail lists, workshops, and
conferences. CUG memberships are by site and include a significant percentage
of Cray computer installations worldwide. For more information, contact your
Cray site analyst or visit the CUG website at www.cug.org.

S–2396–20 xiii

file:///tmp/mytmp.11436/mailto:docs%40cray.com
http://www.cug.org

Introduction [1]

This guide describes the Cray XT series Programming Environment products and
related application development tools. In addition, it includes procedures and
examples that show you how to set up your user environment and build and
run optimized applications. The intended audience is application programmers
and users of Cray XT series systems. Prerequisite knowledge is a familiarity
with the topics in the Cray XT Series System Overview. For information about
managing system resources, system administrators can see the Cray XT Series
System Management manual.

Note: Functionality marked as deferred in this documentation is planned to be
implemented in a later release.

1.1 The Cray XT Series System Environment

The system on which you run your Cray XT series applications is an integrated
set of Cray XT series compute node and service node components. You log in
either to a service node or a standalone cross-compiler machine and use the
Cray XT series Programming Environment and related products to create your
executables. You run your executables on Cray XT series compute nodes.

The operating system is UNICOS/lc; it has compute node and service node
components. Compute nodes run either the CNL or the Catamount operating
system. Service nodes run SUSE LINUX. For details about the differences
between CNL and Catamount, see Chapter 4, page 23.

1.2 The Cray XT Series Programming Environment

The Cray XT series Programming Environment includes the following products
and services:

• PGI compilers for C, C++, and Fortran (see Chapter 5, page 39).

• GNU compilers for C, C++, and Fortran (see Chapter 5, page 39).

• PathScale compilers for C, C++, and Fortran (see Section 5.2.3, page 43).

• Parallel programming models:

– Cray MPICH2, the Message Passing Interface routines (see Section 3.6,
page 18).

S–2396–20 1

Cray XT™ Series Programming Environment User’s Guide

– Cray SHMEM shared memory access routines (see Section 3.7, page 20).

– OpenMP shared memory model routines, Fortran directives, and C and
C++ pragmas (see Section 3.8, page 22). OpenMP is not supported for
applications running under Catamount.

• Cray XT-LibSci scientific library, which includes:

– Basic Linear Algebra Subprograms (BLAS)

– Linear Algebra (LAPACK) routines

– ScaLAPACK routines

– Basic Linear Algebra Communication Subprograms (BLACS)

– Iterative Refinement Toolkit (IRT)

– SuperLU routines

For further information about Cray XT-LibSci, see Section 3.2, page 13.

• AMD Core Math Library (ACML), which includes:

– Fast Fourier Transform (FFT) routines

– Math transcendental library routines

– Random number generators

– GNU Fortran libraries

For further information about ACML, see Section 3.3, page 16.

• PETSc (Portable, Extensible Toolkit for Scientific Computation). For further
information, see Section 3.5, page 18.

• FFTW (see Section 3.4, page 17)

• A subset of the glibc GNU C Library routines for compute node applications
(see Section 3.1, page 13).

• The Performance API (PAPI) (see Section 11.1, page 83).

2 S–2396–20

Introduction [1]

In addition to Programming Environment products, the Cray XT series system
provides these application development products and functions:

• The Application Level Placement Scheduler (ALPS) utility for launching
applications on CNL compute nodes (aprun command), killing processes
(apkill command), and getting status about applications (apstat
command). See Chapter 7, page 53 for a description of aprun and Appendix
E, page 201 for a description of common ALPS error messages.

• The yod command for launching applications on Catamount compute nodes
(see Chapter 8, page 59).

• The cnselect command for generating a candidate list of compute nodes
based on user-specified selection criteria; you can use this list on aprun -L
nodes or yod -list processor-list commands to launch an application on
compute nodes with those characteristics (see the cnselect(1) man page).

• Lustre parallel file system (see Section 2.4, page 11).

• The xtprocadmin -A command for generating a report showing the
attributes of the compute nodes (see Chapter 6, page 47).

• The xtshowmesh and xtshowcabs commands for generating reports
showing the status of compute nodes (see Chapter 6, page 47).

The following optional products are available for Cray XT series systems:

• PBS Pro batch processing system (see Chapter 9, page 67).

Note: If your site has installed another batch system, please contact the
appropriate vendor for the necessary installation, configuration, and
administration information. For example, contact Cluster Resources, Inc.
(http://www.clusterresources.com/) for documentation specific to
Moab products.

• TotalView debugger (see Section 10.2, page 74). The TotalView
debugger is available from TotalView Technologies, LLC
(http://www.totalviewtech.com/Documentation/).

• GNU debugger (see Section 10.3, page 81).

• CrayPat performance analysis tools (see Section 11.2, page 84).

• Cray Apprentice2 performance visualization tool (see Section 11.3, page 88).

S–2396–20 3

http://www.clusterresources.com/
http://www.totalviewtech.com/Documentation/

Cray XT™ Series Programming Environment User’s Guide

1.3 Documentation Included with This Release

Table 1 lists the manuals and man pages that are provided with this release. All
manuals are provided as PDF files, and some are also available as HTML files.
You can view the manuals and man pages through the CrayDoc interface or
move the files to another location, such as your desktop.

Note: You can use the Cray XT Series System Documentation Site Map on
CrayDoc to link to all Cray manuals and man pages included with this release.

Table 1. Manuals and Man Pages Included with This Release

Cray XT Series Programming Environment User's Guide (this manual)

Cray XT Series Programming Environment man pages

Cray XT Series Release Overview

Cray XT Series System Overview

PGI User's Guide

PGI Fortran Reference

PGI Tools Guide

Cray XT Series Programming Environments Installation Guide manual

Modules software package man pages

Cray MPICH2 man pages (read intro_mpi(3) first)

Cray SHMEM man pages (read intro_shmem(3) first)

AMD Core Math Library (ACML) manual

Cray XT-LibSci man pages(read intro_libsci(3s) first)

Iterative Refinement Toolkit man pages(read intro_irt(3) first)

SuperLU Users' Guide

FFT man pages (intro_fft(3), intro_fftw2(3), intro_fftw3(3))

PBS Pro Release Overview, Installation Guide, and Administration Addendum

PBS Pro Quick Start Guide

PBS Pro User Guide

PBS Pro External Reference Specification

TotalView totalview(1) man page

4 S–2396–20

Introduction [1]

Performance API (PAPI) man pages

Using Cray Performance Analysis Tools manual

CrayPat and Cray Apprentice2 man pages (read craypat(1) and app2(1) first)

Additional sources of information:

• PGI manuals at http://www.pgroup.com and the pgcc(1), pgCC(1),
pgf95(1), and pgf77(1) man pages available through the man command.

• Using the GNU Compiler Collection (GCC) manual at http://gcc.gnu.org/
and the gcc(1), g++(1), gfortran(1), and g77(1) man pages available
through the man command.

• QLogic PathScale Compiler Suite User's Guide at
http://www.pathscale.com/docs/html and the
pathcc(1), pathCC(1), pathf95(1), and eko(7) man pages available through
the man command.

• MPICH2 documents at http://www-unix.mcs.anl.gov/mpi/mpich2/
and http://www.mpi-forum.org.

• OpenMP documents at http://www.openmp.org.

• The ScaLAPACK Users' Guide at
http://www.netlib.org/scalapack/slug/.

• SuperLU documents at http://crd.lbl.gov/~xiaoye/SuperLU/.

• PETSc documents at
http://www-unix.mcs.anl.gov/petsc/petsc-as.

• FFTW documents at http://www.fftw.org/.

• PAPI documents at http://icl.cs.utk.edu/papi/.

• Lustre documentation (http://manual.lustre.org/).

• SUSE LINUX man pages available through the man command.

S–2396–20 5

http://www.pgroup.com
http://www.gcc.gnu.org
http://www.pathscale.com/docs/html
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.mpi-forum.org/docs/docs.html
http://www.openmp.org
http://www.netlib.org/scalapack/slug/
http://crd.lbl.gov/%7Exiaoye/SuperLU/
http://www-unix.mcs.anl.gov/petsc/petsc-as
http://www.fftw.org/
http://icl.cs.utk.edu/papi/
http://manual.lustre.org/

Cray XT™ Series Programming Environment User’s Guide

6 S–2396–20

Setting Up the User Environment [2]

Configuring your user environment on a Cray XT series system is similar to
configuring a typical Linux workstation. However, there are steps specific
to Cray XT series systems that you must take before you begin developing
applications.

2.1 Setting Up a Secure Shell

Cray XT series systems use ssh and ssh-enabled applications such as scp for
secure, password-free remote access to the login nodes.

Before you can use the ssh commands, you must generate an RSA authentication
key. The process for generating the key depends on the authentication method
you use. There are two methods of passwordless authentication: with or without
a passphrase. Although both methods are described here, you must use the latter
method to access the compute nodes through a script or when using a system
monitor command such as xtps.

For more information about setting up and using a secure shell, see the ssh(1),
ssh-keygen(1), ssh-agent(1), ssh-add(1), and scp(1) man pages. For further
information about system monitor commands, see the Cray XT Series System
Management manual.

S–2396–20 7

Cray XT™ Series Programming Environment User’s Guide

2.1.1 RSA Authentication with a Passphrase

To enable ssh with a passphrase, complete the following steps.

1. Create a $HOME/.ssh directory and set permissions so that only the file's
owner can access them:

% mkdir $HOME/.ssh

% chmod 700 $HOME/.ssh

2. Generate the RSA keys by using the following command:

% ssh-keygen -t rsa

and follow the prompts. You will be asked to supply a passphrase.

3. The public key is stored in your $HOME/.ssh directory. Use the following
command to copy the key to your home directory on the remote host(s):

% scp $HOME/.ssh/key_filename.pub \

username@system_name:.ssh/authorized_keys

Connect to the remote host by typing the following commands.

If you are using a C shell, use:

% eval s` sh-agent

%

`

ssh-add

If you are using a Bourne shell, use:

$ eval s` sh-agent -s

$

`

ssh-add

Type your passphrase when prompted, followed by:

% ssh remote_host_name

8 S–2396–20

Setting Up the User Environment [2]

2.1.2 RSA Authentication without a Passphrase

To enable ssh without a passphrase, complete the following steps.

1. Create a $HOME/.ssh directory and set permissions so that only the owner
of the file can access them:

% mkdir $HOME/.ssh

% chmod 700 $HOME/.ssh

2. Generate the RSA keys by typing the following command:

% ssh-keygen -t rsa -N ""

and following the prompts.

3. The public key is stored in your $HOME/.ssh directory. Type the following
command to copy the key to your home directory on the remote host(s):

% scp $HOME/.ssh/key_filename.pub \

username@system_name:.ssh/authorized_keys

Note: This step is not required if your home directory is shared.

4. Connect to the remote host by typing the following command:

% ssh remote_host_name

2.2 Using Modules

The Cray XT series system uses modules in the user environment to support
multiple versions of software, such as compilers, and to create integrated
software packages. As new versions of the supported software and associated
man pages become available, they are added automatically to the Programming
Environment, while earlier versions are retained to support legacy applications.
You can use the default version of an application or Modules system commands
to choose another version.

S–2396–20 9

Cray XT™ Series Programming Environment User’s Guide

The PrgEnv module loads the Programming Environment and related product
modules. To load the default PrgEnv module, use:

% module load PrgEnv

To load specific compiler suite modules, use one of the following commands:

% module load PrgEnv-pgi

% module load PrgEnv-gnu

% module load PrgEnv-pathscale

The target environment module is automatically loaded at log in. If the compute
nodes are running CNL, the xtpe-target-cnl module is automatically loaded.
If the compute nodes are running Catamount, the xtpe-target-catamount
module is automatically loaded.

For some products, additional modules may have to be loaded. The chapters
addressing those products specify the module names and the conditions under
which they must be loaded.

Modules also provide a simple mechanism for updating certain environment
variables, such as PATH, MANPATH, and LD_LIBRARY_PATH. In general, you
should make use of the modules system rather than embedding specific directory
paths into your startup files, makefiles, and scripts.

To find out what modules have been loaded, use:

The Base-opts module is loaded by default. Base-opts loads the OS modules
in a versioned set that is provided with the release package.

To get a list of all available modules, use:

% module avail

To switch from one module to another, use:

% module swap swap_out_module swap_in_module

For example, if you have been using the PGI compilers and want to use the GNU
compilers instead, use:

% module swap PrgEnv-pgi PrgEnv-gnu

For further information about the Module utility, see the module(1) and
modulefile(4) man pages.

10 S–2396–20

Setting Up the User Environment [2]

2.3 Modifying the PATH Variable

You may need to modify the PATH variable for your environment. Do not
reinitialize the system-defined PATH. The following example shows how to
modify it for a specific purpose (in this case to add $HOME/bin to the path).

If you are using csh, use:

% set path = ($path $HOME/bin)

If you are using bash, use:

$ export $PATH=$PATH:$HOME/bin

2.4 Lustre File System

Lustre is the Cray XT file system for compute node applications. To use Lustre,
you must direct file operations to paths within a Lustre mount point. You can use
the df -t lustre or lfs df command to locate Lustre mount points:

% lfs df

UUID 1K-blocks Used Available Use% Mounted on

nid00011_mds_UUID 1003524776 63414492 940110284 6% /lus/nid00011[MDT:0]

ost0_UUID 1128979112 278021080 850958032 24% /lus/nid00011[OST:0]

ost1_UUID 1128979112 254976940 874002172 22% /lus/nid00011[OST:1]

ost2_UUID 1128979112 258597116 870381996 22% /lus/nid00011[OST:2]

<snip>

filesystem summary: 16934686680 4270985104 12663701576 25% /lus/nid00011

If your environment has not been set up to use Lustre for I/O, see your system
administrator. The Lustre I/O interface is transparent to the application
programmer; I/O functions are handled by the Lustre client running on the
compute nodes.

If you want to create a file with a specific striping pattern, use the Lustre lfs
command. Lustre file systems include Object Storage Servers (OSSs). Each OSS
hosts two Object Storage Targets (OSTs), which transfer data objects that can be
striped across Redundant Array of Independent Disks (RAID) storage devices.

You may choose to create a file of multiple stripes if your application requires a
higher transmission rate to a single file than can be provided by a single OSS. You
may also need to stripe a file if a single OST does not have enough free space to
hold the entire file. For example, the command:

% lfs setstripe results2 1048576 1 4

S–2396–20 11

Cray XT™ Series Programming Environment User’s Guide

stripes file results2 on four OSTs, (starting with ost1). The stripe size is
1048576 bytes.

For further information, see the lfs(1) man page.

12 S–2396–20

Libraries and APIs [3]

This chapter describes the libraries and APIs that are available to application
developers.

3.1 C Language Run Time Library

The Cray XT series supports subsets of the GNU C library, glibc, for CNL and
Catamount applications. For details on glibc for CNL, see Section 4.2.1, page 26
and Appendix A, page 181. For details on the Catamount port of glibc, see
Section 4.3.1, page 30 and Appendix B, page 187.

3.2 Cray Scientific Library

The Cray XT scientific library, XT-LibSci, includes Basic Linear Algebra
Subroutines (BLAS), linear algebra routines (LAPACK), parallel linear algebra
routines (ScaLAPACK), Basic Linear Algebra Communication Subprograms
(BLACS), the Iterative Refinement Toolkit (IRT), and the SuperLU sparse solver
routines.

For additional information about XT-LibSci routines, see the scientific libraries
man pages (read intro_libsci(3s) first).

3.2.1 BLAS and LAPACK

The BLAS and LAPACK libraries include routines from the 64-bit libGoto
library from the University of Texas.

If you require a C interface to BLAS and LAPACK but want to use Cray XT-LibSci
BLAS or LAPACK routines, you must use the Fortran interfaces.

You can access the Fortran interfaces from a C program by adding an underscore
to the respective routine names and by passing arguments by reference (rather
than by value in the traditional way). For example, you can call the dgetrf()
function as follows:

dgetrf_(&uplo, &m, &n, a, &lda, ipiv, work, &lwork, &info);

Note: C programmers using the Fortran interface are advised that arrays are
required to be ordered in the Fortran column-major manner.

S–2396–20 13

Cray XT™ Series Programming Environment User’s Guide

3.2.2 ScaLAPACK and BLACS

ScaLAPACK is a distributed-memory, parallel linear algebra library. The
XT-LibSci version of ScaLAPACK is modified to work more efficiently on
Cray XT series compute nodes.

The BLACS library is a set of communication routines used by ScaLAPACK and
the user to set up a problem and handle the communications.

The ScaLAPACK and BLACS libraries can be used in MPI and SHMEM
applications. Cray XT-LibSci under CNL also supports hybrid MPI/ScaLAPACK
applications, which use threaded BLAS on a compute node and MPI between
nodes. To use ScaLAPACK in a hybrid application:

1. Adjust the process grid dimensions in ScaLAPACK to account for the
decrease in BLACS nodes.

2. Ensure that the number of BLACS processes required is equal to the number
of nodes required, not the number of cores.

3. Set GOTO_NUM_THREADS to 2 in the PBS job script used to launch the job.

Example 1: Running a ScaLAPACK application

To run a ScaLAPACK application in regular mode (that is, 1 MPI process per
core) with 16 BLACS processes on a 4x4 computational grid, use the #PBS -l
mppwidth option to specify the number of processing elements needed (16) and
the #PBS -l mppnppn option to specify the number of processing elements
per node (2).

#!/usr/bin/csh

#PBS -l mppwidth=16

#PBS -l mppnppn=2

cd /lus/nid00007

aprun -n 16 ./a.out

14 S–2396–20

Libraries and APIs [3]

Example 2: Running an ScaLAPACK hybrid application

To run the same job using a hybrid application, first reduce the number of BLACS
processes from 16 to 8 (by specifying either a 2x4 or possibly a 4x2 computational
grid). The additional parallelism within a node is provided through use of the
threaded BLAS.

In the PBS script, only those tasks actually recognized are requested. So set
mppwidth equal to the number of nodes required (8) and mppnppn equal to the
number of PEs per node (1).

#!/usr/bin/csh

#PBS -l mppwidth=8

#PBS -l mppnppn=1

cd /lus/nid00007

setenv GOTO_NUM_THREADS 2

aprun -n 8 ./a.out

3.2.3 Iterative Refinement Toolkit

The Iterative Refinement Toolkit (IRT) is a library of factorization routines,
solvers, and tools that can be used to solve systems of linear equations more
efficiently than the full-precision solvers in Cray XT-LibSci or ACML.

IRT exploits the fact that single-precision solvers can be up to twice as fast as
double-precision solvers. IRT uses an iterative refinement process to obtain
solutions accurate to double precision.

S–2396–20 15

Cray XT™ Series Programming Environment User’s Guide

IRT provides two interfaces:

• Benchmarking interface. The benchmarking interface routines replace the
high-level drivers of LAPACK and ScaLAPACK. The names of the benchmark
API routines are identical to their LAPACK or ScaLAPACK counterparts or
replace calls to successive factorization and solver routines. This allows you to
use the IRT process without modifying your application.

For example, the IRT dgesv() routine replaces either the LAPACK dgesv()
routine or the LAPACK dgetrf() and dgetrs() routines. To use the
benchmarking interface, set the IRT_USE_SOLVERS environment variable
to 1.

Note: Use this interface with caution; calls to the LAPACK LU, QR or
Cholesky routines are intercepted and IRT is used instead.

• Expert interface. The expert interface routines give you greater control of the
iterative refinement process and provide details about the success or failure of
the process. The format of advanced API calls is:

call irt_factorization-method_data-type_processing-mode(arguments)

such as: call irt_po_real_parallel(arguments).

For details about IRT, see the intro_irt(3) man page.

3.2.4 SuperLU

The SuperLU library routines solve large, sparse nonsymmetric systems of linear
equations. Cray XT-LibSci SuperLU provides only the distributed-memory
parallel version of SuperLU. The library is written in C but can be called from
programs written in either C or Fortran.

3.3 AMD Core Math Library

The AMD Core Math Library (ACML) module is no longer loaded as part of the
default PrgEnv environment. BLAS and LAPACK functionality is now provided
by Cray XT-LibSci (see Section 3.2.1, page 13). However, if you need ACML for
FFT functions, math functions, or random number generators, you can load the
library using the acml module:

% module load acml

16 S–2396–20

Libraries and APIs [3]

ACML includes:

• A suite of Fast Fourier Transform (FFT) routines for real and complex data

• Fast scalar, vector, and array math transcendental library routines optimized
for high performance

• A comprehensive random number generator suite:

– Five base generators plus a user-defined generator

– 22 distribution generators

– Multiple-stream support

ACML's internal timing facility uses the clock() function. If you run an
application on compute nodes that uses the plan feature of FFTs, underlying
timings will be done using the native version of clock(). On Catamount,
clock() returns elapsed time. On CNL, clock() returns the sum of user and
system CPU times.

3.4 FFTW Libraries

The Programming Environment includes versions 3.1.1 and 2.1.5 of the Fastest
Fourier Transform in the West (FFTW) library. FFTW is a C subroutine library
with Fortran interfaces for computing the discrete Fourier transform in one or
more dimensions, of arbitrary input size, and of both real and complex data (as
well as of even/odd data, such as the discrete cosine/sine transforms). The Fast
Fourier Transform algorithm is applied for many problem sizes.

To use the default FFTW library, use:

% module load fftw

To use the FFTW 3.1.1 library, use:

% module load fftw/3.1.1

To use the FFTW 2.1.5 library, use:

% module load fftw/2.1.5

Distributed-memory parallel FFTs are available only in FFTW 2.1.5.

S–2396–20 17

Cray XT™ Series Programming Environment User’s Guide

The FFTW 3.1.1 and FFTW 2.1.5 modules cannot be loaded at the same time.
You must first unload the other module, if already loaded, before loading the
desired one. For example, if you have loaded the FFTW 3.1.1 library and want to
use FFTW 2.1.5 instead, use:

% module swap fftw/3.1.1 fftw/2.1.5

3.5 PETSc Library

The Programming Environment supports the 2.3.3 release of the Portable,
Extensible Toolkit for Scientific Computation (PETSc) library. PETSc is an open
source library of sparse solvers. There are two PETSc modules:

• petsc for real data

• petsc-complex for complex data

To switch from the PETSc module for real data to the module for complex data,
use:

% module swap petsc petsc-complex

For details, see the intro_petsc(3) man page and
http://www-unix.mcs.anl.gov/petsc/petsc-as/index.html.

3.6 Cray MPICH2 Message Passing Library

Cray MPICH2 implements the MPI-2 standard, except for support of spawn
functions. It also implements the MPI 1.2 standard, as documented by the MPI
Forum in the spring 1997 release of MPI: A Message Passing Interface Standard.

The Cray MPICH2 message-passing libraries are implemented on top of the
Portals low-level message-passing engine. The Portals interface is transparent to
the application programmer.

All Cray XT compilers support MPICH2 applications. There are two versions
of the MPICH2 library available for users of the PGI or PathScale Fortran
compilers. One version supports applications where the data size for the Fortran
default types integer, real, and logical is 32 bits, and the other version supports
applications where the data size is 64 bits. For further details, see Section 4.1.1.1,
page 23 and Section 4.1.3, page 25.

For examples showing how to compile, link, and run MPI applications, see
Chapter 13, page 95 and Chapter 14, page 133.

18 S–2396–20

http://www-unix.mcs.anl.gov/petsc/petsc-as/index.html

Libraries and APIs [3]

Note: Programs that use MPI library routines for parallel control and
communication should call the MPI_Finalize() routine at the conclusion
of the program.

For a list of MPI error messages and suggested workarounds, see Appendix D,
page 199.

For information about MPI environment variables, see the intro_mpi(3) man
page.

There are some limitations to Cray XT MPICH2 you should take into
consideration:

• There is a name conflict between stdio.h and the MPI C++ binding
in relation to the names SEEK_SET, SEEK_CUR, and SEEK_END. If your
application does not reference these names, you can work around this
conflict by using the compiler flag -DMPICH_IGNORE_CXX_SEEK. If your
application does require these names, as defined by MPI, undefine the
names (#undef SEEK_SET, for example) prior to the #include "mpi.h"
statement. Alternatively, if the application requires the stdio.h naming,
your application should include the #include "mpi.h" statement before
the #include <stdio.h> or #include <iostream> statement.

• The following process-creation functions are not supported and, if used,
generate aborts at run time:

– MPI_Close_port() and MPI_Open_port()

– MPI_Comm_accept()

– MPI_Comm_connect() and MPI_Comm_disconnect()

– MPI_Comm_spawn() and MPI_Comm_spawn_multiple()

– MPI_Comm_get_attr() with attribute MPI_UNIVERSE_SIZE

– MPI_Comm_get_parent()

– MPI_Lookup_name()

– MPI_Publish_name() and MPI_Unpublish_name()

• The MPI_LONG_DOUBLE data type is not supported.

• The behavior of the MPICH2 function MPI_Dims_create() is not consistent
with the MPI standard. Therefore, Cray added a special mpi_dims_create
algorithm to the MPI library. This added function is enabled by default.

S–2396–20 19

Cray XT™ Series Programming Environment User’s Guide

3.7 Cray SHMEM Library

The Cray shared memory access (SHMEM) library is a set of logically shared,
distributed memory access routines. Cray SHMEM routines are similar to MPI
routines; they pass data between cooperating parallel processes. The Cray
SHMEM library is implemented on top of the Portals low-level message-passing
engine. The Portals interface is transparent to the application programmer.

All Cray XT compilers support SHMEM applications. There are two versions of
the SHMEM library available for users of the PGI or PathScale Fortran compilers.
One version supports applications where the data size for the Fortran default
types integer, real, and logical is 32 bits; the other version supports applications
where the size is 64 bits. For further details, see Section 4.1.1.1, page 23 and
Section 4.1.3, page 25.

Cray SHMEM routines can be used in programs that perform computations
in separate address spaces and that explicitly pass data by means of put and
get functions to and from different processing elements in the program. Cray
SHMEM routines can be called from Fortran, C, and C++ programs and used
either by themselves or with MPI functions.

Portals and the Cray SHMEM library support the following SHMEM atomic
memory operations:

• atomic swap

• atomic conditional swap

• atomic fetch and increment

• atomic fetch and add

• atomic lock

An operation is atomic if the steps cannot be interrupted and are done as a unit.

When running on Catamount, you can use the yod command line options
-stack, -heap, and -shmem to control the size (in bytes) of the stack, private
heap, and symmetric heap, respectively. See the yod(1) man page for details. On
Catamount, SHMEM applications can use all available memory per node (total
memory minus memory for the kernel and the process control thread (PCT)).
SHMEM does not impose any restrictions on stack, heap, or symmetric heap
memory regions.

20 S–2396–20

Libraries and APIs [3]

When running on CNL, the environment variable
XT_LINUX_SHMEM_HEAP_SIZE can be used to control the size (in
bytes) of the private heap. The size of the stack is limited by the value of
stacksize in a process' limits, if this is not unlimited. If this limit is set to
unlimited, then the default size of the stack is 16 MB, unless the user sets
the environment variable XT_LINUX_SHMEM_STACK_SIZE, which specifies
the desired size of the stack in bytes.

The environment variable XT_SYMMETRIC_HEAP_SIZE can be used when
running on either Catamount or CNL to control the size (in bytes) of the
symmetric heap.

Note: To build, compile, and run Cray SHMEM applications, you need to call
start_pes(int npes) or shmem_init() as the first Cray SHMEM call
and shmem_finalize() as the last Cray SHMEM call.

For examples showing how to compile, link, and run SHMEM applications, see
Chapter 13, page 95 and Chapter 14, page 133.

When using SHMEM functions, you should be aware of the following
performance issues:

• The performance of strided operations is poor. The Portals network protocol
stack on Cray XT series is optimized for block transfers. It does not support
efficient access of non-contiguous remote memory. Repackaging data into
contiguous blocks in the application and then calling a shmem_put() or
shmem_get() function will lead to better performance than calling strided
operations. You may want to try this option if your application uses strided
SHMEM operations.

• The performance of atomic operations is poor because Cray XT series systems
do not provide hardware support for atomic memory operations. Atomic
memory operations should not be used for high fan-in synchronization
because the injection rate is much larger than the processing rate, leading to a
buildup of requests and, in turn, degraded performance.

• Cray XT series systems do not support barrier operations in hardware
or firmware. The barrier functions are implemented in software and are
relatively slow. Cray recommends that you minimize the use of barriers.

• Avoid the following type of constructs:

while (remval != 0) {

shmem_get64(&remval, &rem_flag, 1, pe);

}

S–2396–20 21

Cray XT™ Series Programming Environment User’s Guide

They can severely tax the Portals network protocol stack, particularly if many
processes are spinning on a variable at a single target process. If possible, use
other synchronization mechanisms that rely on spinning on local memory.

3.8 OpenMP Library

The Cray XT Series system supports version 2.5 of the OpenMP Application
Program Interface standard. OpenMP is a shared-memory parallel programming
model that application developers can use to create and distribute work using
threads. In addition to library routines, OpenMP provides Fortran directives, C
and C++ pragmas, and environment variables. The PGI, PathScale, and GNU
compilers support OpenMP.

To use OpenMP, you need to include the appropriate OpenMP option on the
compiler command line. The compiler command options are:

PGI -mp=nonuma

PathScale -mp

GCC -fopenmp

You also need to set the OMP_NUM_THREADS environment variable to the number
of threads in the team.

The number of processors hosting OpenMP threads at any given time is fixed at
program startup and specified by the aprun -d depth option (see Section 7.1,
page 53 for further information).

For an example showing how to compile, link, and run OpenMP applications, see
Example 10, page 106.

OpenMP applications can be used in hybrid OpenMP/MPI applications but may
not cross node boundaries. In OpenMP/MPI applications, MPI calls can be made
from master or sequential regions but not parallel regions. OpenMP is supported
on CNL but not Catamount.

For further information about launching OpenMP applications, see
the aprun(1) man page. For further information about OpenMP
functions, see the OpenMP website (http://www.openmp.org), the
PGI website (http://www.pgroup.com/), the PathScale website
(http://www.pathscale.com/), or the GNU OpenMP website
(http://gcc.gnu.org/projects/gomp/).

22 S–2396–20

http://www.openmp.org
http://www.pgroup.com/
http://www.pathscale.com/
http://gcc.gnu.org/projects/gomp/

Programming Considerations [4]

The manuals and man pages for third-party and open source Cray XT series
Programming Environment products provide platform-independent descriptions
of product features. This chapter provides information specific to Cray XT
series systems that you should consider when using those products to develop
CNL or Catamount applications. The following sections describe general
programming considerations, Catamount-specific programming considerations,
and CNL-specific programming considerations.

4.1 General Programming Considerations

This section describes product features that apply to all applications.

4.1.1 PGI Compilers

When using the PGI compilers, you should be aware of the following factors.

4.1.1.1 Default MPICH2 and SHMEM Libraries

Users of the PGI Fortran compiler have the option of promoting default integer,
real, and logical operations to 64-bit precision. By including the -default64
option on the ftn command line, you pass the -i8 and -r8 options to the
compiler. The -i8 option directs the compiler to use 64 bits for the data size of
default integer and logical operations. The -r8 option directs the compiler to use
64 bits for the data size of default real variables.

All Fortran source files for the application containing default integer, logical,
real, or complex variables must be compiled this way. In addition, for MPI
applications the -default64 option directs the linker to use the default64
version of the MPI library. For SHMEM applications, the -default64 option
directs the linker to use the default64 version of the SHMEM library.

Remember to link in default64 mode. If you compile using -default64 but
omit the -default64 option when linking the compiled object files into an
executable, the compiler will attempt to link to the default32 libraries, and the
resulting executable probably will not run.

Note: The sizes of data types that use explicit kind and star values are not
affected by this option.

S–2396–20 23

Cray XT™ Series Programming Environment User’s Guide

For further information, see the ftn(1) man page.

4.1.1.2 Unsupported C++ Header Files

PGI does not provide a complete set of the old C++ Standard Library and
STL header files. PGI C++ does support some old header files (iostream.h,
exception.h, iomanip.h, ios.h, istream.h, ostream.h, new.h,
streambuf.h, strstream.h, and typeinfo.h), which include their C++
Standard Library counterpart.

To use an unsupported header file, you can:

• Delete the .h. For example, change <vector.h> to <vector>, or

• Create your own headerfile.h file and use the -I compiler option to direct
the compiler to access the header file in your directory:

#ifndef __VECTOR_H

#define __VECTOR_H

#include <vector>

using std::vector;

#endif

4.1.1.3 Restrictions on Large Data Objects

The PGI compilers support data objects larger than 2 GB. However, the Cray XT
series Programming Environment has restrictions in this area because the
user-level libraries (MPI, SHMEM, and LibSci) are compiled in the small memory
model.

The only way to build an application with data objects larger than 2 GB is to limit
the static data sections to less than 2 GB by converting static data to dynamically
allocated data.

4.1.1.4 The FORTRAN STOP Message

For PGI Fortran, the stop statement writes a FORTRAN STOP message to
standard output. In a parallel application, the FORTRAN STOP message is written
by every process that executes the stop statement: potentially, every process in
the communicator space. This is not scalable and will cause performance and,
potentially, reliability problems in applications of very large scale.

You can turn off the STOP message by using the NO_STOP_MESSAGE
environment variable. For examples, see Example 9, page 105 and Example 27,
page 142.

24 S–2396–20

Programming Considerations [4]

4.1.1.5 Unsupported Compiler Command Options

The following PGI compiler command options are not supported on Cray XT
series systems:

• -mprof=mpi

• -Mmpi

• -Mscalapack

4.1.1.6 Suppressing Vectorization

Cray XT series systems support the following methods of suppressing
vectorization in PGI applications:

• The -Mnovect compiler option suppresses vectorization for the entire source
file.

• The !pgi$r novector directive or #pragma routine novector
statement placed before the start of a routine suppresses vectorization for
the entire routine.

• The !pgi$ novector directive or #pragma loop novector statement
placed before a loop suppresses vectorization for the loop. This directive does
not suppress vectorization for loops nested inside the targeted loop, so in
most cases you should apply the directive to innermost loops.

For further information, see the PGI User's Guide.

4.1.2 PGI Debugger

The PGI debugger, PGDBG, is not supported on Cray XT series systems.

4.1.3 PathScale Fortran Compiler

Users of the PathScale Fortran compiler have the option of promoting default
integer, real, and logical operations to 64-bit precision. By including the
-default64 option on the ftn command line, you pass the -i8 and -r8
options to the compiler. The -i8 option directs the compiler to use 64 bits for the
data size of default integer and logical operations. The -r8 option directs the
compiler to use 64 bits for the data size of default real variables.

S–2396–20 25

Cray XT™ Series Programming Environment User’s Guide

All Fortran source files for the application containing default integer, logical,
real, or complex variables must be compiled this way. In addition, for MPI
applications the -default64 option directs the linker to use the default64
version of the MPI library. For SHMEM applications, the -default64 option
directs the linker to use the default64 version of the SHMEM library.

Remember to link in default64 mode. If you compile using the -default64
option but omit the -default64 option when linking the compiled object files
into an executable, the compiler will attempt to link to the default32 libraries, and
the resulting executable probably will not run.

Note: The sizes of data types that use explicit kind and star values are not
affected by this option.

For further information, see the ftn(1) man page.

4.1.4 Little-endian Support

The Cray XT series system supports little-endian byte ordering. The least
significant value in a sequence of bytes is stored first in memory.

4.1.5 Portals Message Size Limit

A single Portals message cannot be longer than 2 GB.

4.1.6 Shared Libraries

The Cray XT series systems currently do not support dynamic loading of
executable code or shared libraries. Also, the related LD_PRELOAD environment
variable is not supported.

4.2 CNL Programming Considerations

This section describes the factors you need to take into consideration when
developing applications to be run on CNL compute nodes.

4.2.1 CNL glibc Functions

CNL provides limited support of the process control functions such as popen(),
fork(), and exec(); the resulting processes execute in the limited RAM disk
environment on each compute node.

26 S–2396–20

Programming Considerations [4]

The exec() function can execute the scp and ksh commands and the following
BusyBox commands:

ash gunzip nice

cat kill ping

chmod killall ps

chown ln renice

cp rm cpio

ls tail dmesg

mkdir test free

vi grep more

zcat

For further information, see the busybox(1) man page.

CNL supports the cpuinfo and meminfo /proc files. These files contain
information about your compute node.

CNL glibc does not support:

• The getgrgid(), getgrnam(), getpwnam(), and getpwuid() functions.

• Customer-provided functions that require a daemon.

Appendix A, page 181 lists the glibc functions that CNL supports. The glibc
functions that CNL does not support are so noted in their man pages.

4.2.2 I/O Support

The I/O operations allowed in CNL applications are Fortran, C, and C++
I/O calls; Cray MPICH2, Cray SHMEM, and OpenMP I/O functions; and the
underlying Linux Lustre client I/O functions.

In Catamount, I/O is possible to any file system accessible to yod. Lustre I/O is
handled as a special case. In CNL, only I/O to Lustre is supported. Files in other
remote file systems cannot be accessed. One exception is the handling of stdin,
stdout, and stderr.

S–2396–20 27

Cray XT™ Series Programming Environment User’s Guide

The aprun utility handles stdin, stdout, and stderr. The aprun file descriptor 0
forwards stdin data to processing element 0 (PE 0) only; stdin is closed on all
other PEs. The stdout and stderr data from all PEs is sent to aprun, which
forwards the data to file descriptors 1 and 2.

Files local to the compute node, such as ones in /proc or /tmp, can be accessed
by a CNL application.

4.2.3 External Connectivity

Cray XT series systems support external connectivity to or from compute nodes
running CNL. You can use IP functions in your programs to access network
services. To determine if your site has configured CNL compute nodes for
network connectivity, see your system administrator.

4.2.4 Timing Functions

CNL supports the following timing functions:

• CPU timers. CNL supports the Fortran cpu_time() function. The Fortran
cpu_time(time) intrinsic subroutine returns the processor time, where time
has a data type of real4 or real8. The magnitude of the value returned by
cpu_time() is not necessarily meaningful. You call cpu_time() before and
after a section of code; the difference between the two times is the amount of
CPU time (in seconds) used by the program.

• Elapsed time counter. CNL supports the MPI_Wtime() and
MPI_Wtick()functions and the Fortran system_clock() intrinsic
subroutine.

The MPI_Wtime() function returns the elapsed time. The MPI_Wtick()
function returns the resolution of MPI_Wtime() in seconds.

CNL does not support the dclock() or etime() functions.

4.2.5 Signal Support

The aprun utility catches and forwards the SIGHUP, SIGINT, SIGQUIT,
SIGTERM, SIGABRT, SIGUSR1, and SIGUSR2 signals to an application. For
further information, see Section 7.8, page 58.

28 S–2396–20

Programming Considerations [4]

4.2.6 Core Files

When an application fails on CNL, one core file is generated for the first failing
process. An application generates no core file at all if a file named core already
exists in the current directory.

4.2.7 Page Size

CNL supports a single page size of 4 KB.

4.2.8 Resource Limits

Memory limits are defined by the node default or the aprun -m option. Time
limits are inherited from the aprun process limits or specified with the aprun
-t option. Other limits are inherited from the limits of aprun. All limits apply
to individual processing elements; there are no aggregate application limits that
can be specified with aprun options.

4.2.9 One Application Per Node Limitation

The Cray XT series currently does not support running more than one CNL
application on a dual-core compute node.

4.2.10 Parallel Programming Models

The MPI, SHMEM, and OpenMP parallel programming models are supported
on CNL applications.

4.2.11 Modified Copy-on-write Process

Under Linux, fork() uses a copy-on-write process to conserve time and
memory resources. When a process forks a child process, most of the pages in the
parent process' address space are initially shared with the child process. The
parent and child processes can continue sharing a page until one of the processes
tries to modify the page. At that point, the process modifying the page creates
a new page for its private use, copies the previously-shared page's data into it,
and continues to use this new page instead of the previously-shared page. The
previously-shared page now belongs solely to the other process.

S–2396–20 29

Cray XT™ Series Programming Environment User’s Guide

The copy-on-write process can adversely affect Cray XT user applications that
use Portals. To correct this problem, Cray modified the Portals kernel to perform
a partial copy when a process forks a child process. For each region of a process'
address space that is registered with Portals for Remote Direct Memory Access
(RDMA), the first and last page of the region are copied to a private page in the
child's address space as the fork occurs. This ensures that Portals can continue to
transfer data using these pages in the parent's address space, and also ensures
that any data residing on these pages that were not intended for Portals transfers
(such as heap variables) can be referenced in the child's address space.

The implications for application developers are:

• Pages in the middle of a Portals memory region (likely maps to any large MPI
message buffers) are not accessible in the child process. You should copy the
necessary data out of the parent's message buffer before forking.

• More memory is allocated and copied than in a normal fork. This could cause
unexpected memory exhaustion if you have many Portals memory regions.

4.3 Catamount Programming Considerations

This section describes the factors you need to take into consideration when
developing applications to be run on Catamount compute nodes.

4.3.1 Catamount glibc Functions

Because Catamount is designed specifically to provide critical support to
high-speed computational applications, its functionality is limited in certain
areas where the service nodes are expected to take over. In particular, glibc on
Catamount does not support:

• Dynamic process control (such as exec(), popen(), fork(), or system
library calls).

• Threading.

• The /proc files such as cpuinfo and meminfo. (These files contain
information about your login node.)

• The ptrace() system call.

30 S–2396–20

Programming Considerations [4]

• The mmap() function. If mmap() is called, a skeleton function returns -1.
You should use malloc() instead of mmap() if the mmap() call is using
the MAP_ANONYMOUS flag; malloc() is not an appropriate replacement for
mmap() calls that use the MAP_FIXED or MAP_FILE flag. If you do use
malloc(), be aware that you may have to resolve data alignment issues. See
the malloc() man page for details.

Note: The Cray XT series system provides two implementations of
malloc(): Catamount malloc() and GNU malloc(). Catamount
provides a custom implementation of the malloc() function. This
implementation is tuned to Catamount's non-virtual-memory operating
system and favors applications allocating large, contiguous data arrays.
The function uses a first-fit, last-in-first-out (LIFO) linked list algorithm.
For information about gathering statistics on memory usage, see the
heap_info(3) man page. In some cases, GNU malloc() may improve
performance.

• The profil() function.

• Any of the getpwd*(), getgr*(), and getpw*() families of library calls.

• Terminal control.

• Customer-provided functions that require a daemon.

• Any functions that require a database, such as Network Block Device (NDB)
functions. For example, there is no support for the uid and gid family of
queries that are based on the NDB functions.

• There is limited support for signals and ioctl(). See the man page for
details.

Appendix B, page 187 lists the glibc functions that Catamount supports. The
glibc functions that Catamount does not support are so noted in their man pages.

4.3.2 I/O Support

I/O support for Catamount applications is limited. The only operations allowed
are Fortran, C, and C++ I/O calls; Cray MPICH2 and Cray SHMEM I/O
functions; and the underlying Catamount (libsysio) and Lustre (liblustre) I/O
functions.

S–2396–20 31

Cray XT™ Series Programming Environment User’s Guide

Application programmers should keep in mind the following behaviors:

• I/O is offloaded to the service I/O nodes. The yod application launcher
handles stdin, stderr, and stdout. For more information, see Section
8.6, page 64.

• Calling an I/O function such as open() with a bad address causes the
application to fail with a page fault. On the service nodes, a bad address
causes the function to set errno = EFAULT and return -1.

• Catamount does not support I/O on named pipes.

The following sections describe techniques you can use to improve I/O
performance.

4.3.2.1 Improving Fortran I/O Performance

To increase buffer size in a Fortran program, use the setvbuf3f() function:

integer function setvbuf3f(lu, type, size)

Table 2. setvbuf3f() Arguments

Argument Description

integer lu The logical unit

integer type 0 — Full buffering

1 — Line buffering

2 — No buffering

integer size The size of the new buffer

The setvbuf3f() function returns 0 on success, nonzero on failure. For further
information, see the setbuf(3) man page.

4.3.2.2 Improving C++ I/O Performance

The standard stream I/O facilities defined in the Standard C++ header file
<iostream> are unbuffered. You can use the routine pubsetbuf() to specify
a buffer for I/O. Example 29, page 144 shows how pubsetbuf() can improve
performance.

32 S–2396–20

Programming Considerations [4]

I/O-to-file streams defined in <fstream> are buffered with a default buffer
size of 4096. You can use pubsetbuf() to specify a buffer that has a different
size. You must specify the buffer size before the program performs a read or
write to the file; otherwise, the call to pubsetbuf() is ignored and the default
buffer is used. Example 30, page 145 shows how to use pubsetbuf() to specify
a buffer for <fstream> file I/O. Avoid calls to member function endl to prevent
the buffer from being flushed.

4.3.2.3 Improving stdio Performance

By default, stdin, stdout, and stderr are unbuffered. Under Catamount, this
limits the data transfer rate to approximately 10 bytes per second because read
and write calls are offloaded to yod. To improve performance, call setvbuf() to
buffer stdin input or stdout/stderr output. For an example showing how to
improve stdio performance, see Example 31, page 147.

4.3.2.4 Improving Large File, Sequential I/O Performance

IOBUF is an I/O buffering library that can reduce the I/O wait time for programs
that read or write large files sequentially. IOBUF intercepts standard I/O calls
such as fread() and fopen() and replaces the stdio layer of buffering with
a replacement layer of buffering, thus improving program performance by
enabling asynchronous prefetching and caching of file data. In addition, IOBUF
can gather run time statistics and print a summary report of I/O activity for
each file.

No program source changes are needed to use IOBUF. Instead, you relink your
program with the IOBUF library and set one or more environment variables.

To use IOBUF, follow these steps:

1. Load the iobuf module:

% module load iobuf

2. Relink the program.

3. Set the IOBUF_PARAMS environment variable.

The IOBUF_PARAMS environment variable specifies patterns for selecting
I/O files and sets parameters for buffering. If this environment variable is not
set, the default state is no buffering and the I/O call is passed on to the next
layer without intervention.

S–2396–20 33

Cray XT™ Series Programming Environment User’s Guide

The general format of the IOBUF_PARAMS environment variable is a
comma-separated list of specifications:

IOBUF_PARAMS 'spec1,spec2,spec3,...'

Each specification begins with a file name pattern. When a file is opened, the
list of specifications is scanned and the first matching file name pattern is
selected. If no pattern matches, the file is not buffered. The file name pattern
follows standard shell pattern matching rules. For example, to buffer stdout,
use:

% setenv IOBUF_PARAMS '%stdout'

4. Execute the program.

Note: IOBUF works with PGI Fortran programs but does not work with
PathScale Fortran or GNU Fortran programs. Also, IOBUF works with the
PGI, PathScale, and GNU C compilers. IOBUF works with C++ programs that
use stdio but does not work with the C++ standard buffered I/O stream class
<iostream>.

C programs that use POSIX-style I/O calls like open(), read(), write(), and
close() are not affected by IOBUF. A workaround is to replace POSIX I/O calls
in the C program with their equivalent IOBUF-specific calls. The IOBUF calls are
identical to their POSIX counterparts but are prefixed with iobuf_.

For further information, see the iobuf(3) man page.

4.3.2.5 Using Stride I/O Functions to Improve Performance

You can improve file I/O performance of C and C++ programs by using the
readx(), writex(), ireadx(), and iwritex() stride I/O functions. For
further information, see the man pages.

4.3.2.6 Reducing Memory Fragmentation

In past releases, small memory allocations could become interspersed throughout
memory, preventing the allocation of very large arrays (that is, arrays larger
than half of available memory). To solve this problem, small allocations (those
less than or equal to 100 MB, by default) are still allocated into the beginning of
the first available free area of memory, but large allocations are now allocated
into the end of the last available free area. This allows very large arrays to be
allocated/freed in a separate area of memory, making memory fragmentation
less likely.

34 S–2396–20

Programming Considerations [4]

You can use the CATMALLOC_LARGE_ALLOC_SIZE environment variable to
change the default small versus large delineation line.

4.3.3 External Connectivity

Cray XT does not support external connectivity to or from compute nodes
running Catamount. Pipes, sockets, remote procedure calls, or other types of
TCP/IP communication are not supported. The Cray MPICH2, Cray SHMEM,
and OpenMP parallel programming models and the underlying Portals interface
are the only supported communication mechanisms.

4.3.4 Timing Functions

Catamount supports the following timing functions:

• Interval timer. Catamount supports the setitimer ITIMER_REAL
function. It does not support the settimer ITIMER_VIRTUAL or the
setitimer ITIMER_PROF function. Also, Catamount does not support
the getitimer() function.

• CPU timers. Catamount supports the glibc getrusage() and the Fortran
cpu_time() functions. For C and C++ programs, getrusage() returns
the current resource usages of either RUSAGE_SELF or RUSAGE_CHILDREN.
The Fortran cpu_time(time) intrinsic subroutine returns the processor
time, where time has a data type of real4 or real8. The magnitude of
the value returned by cpu_time() is not necessarily meaningful. You call
cpu_time() before and after a section of code; the difference between the
two times is the amount of CPU time (in seconds) used by the program.

• Elapsed time counter. The dclock(), Catamount clock(), and
MPI_Wtime() functions and the system_clock() Fortran intrinsic
subroutine calculate elapsed time. The etime() function is not supported.

The dclock() value rolls over approximately every 14 years and has a
nominal resolution 100 nanoseconds on each node.

Note: The dclock() function is based on the configured processor
frequency, which may vary slightly from the actual frequency. The clock
frequency is not calibrated. Furthermore, the difference between configured
and actual frequency may vary slightly from processor to processor.
Because of these two factors, accuracy of the dclock() function may be off
by as much as +/-50 microseconds/second or 4 seconds/day.

The system_clock() function has a resolution of 1000 ticks per second.

S–2396–20 35

Cray XT™ Series Programming Environment User’s Guide

The clock() function is now supported on Catamount; it estimates elapsed
time as defined for dclock(). The Catamount clock() function is not
the same as the Linux clock() function. The Linux clock() function
measures processor time used. For Catamount compute node applications,
Cray recommends that you use the dclock() function or an intrinsic timing
routine in Fortran such as cpu_time() instead of clock(). For further
information, see the dclock(3) and clock(3) man pages.

The MPI_Wtime() function returns the elapsed time. The MPI_Wtick()
function returns the resolution of MPI_Wtime() in seconds. For an example
showing how to use dclock() to calculate elapsed time, see Example 28,
page 143.

4.3.5 Signal Support

In previous Cray XT series releases, Catamount did not correctly provide
extra arguments to signal handlers when the user requested them through
sigaction(). Signal handlers installed through sigaction() have the
prototype:

void (*handler) (int, siginfo_t *, void *)

which allows a signal handler to optionally request two extra parameters. On
Catamount compute nodes, these extra parameters are provided in a limited
fashion when requested.

The siginfo_t pointer points to a valid structure of the correct size but contains
no data.

The void * parameter points to a ucontext_t structure. The uc_mcontext
field within that structure is a platform-specific data structure that, on compute
nodes, is defined as a sigcontext_t structure. Within that structure, the
general purpose and floating-point registers are provided to the user. You should
rely on no other data.

For a description of how yod propagates signals to running applications, see
Section 8.7, page 64.

4.3.6 Core Files

By default, when an application fails on Catamount, only one core file is
generated: that of the first failing process. For information about overriding the
defaults, see the core(5) man page. Use caution with the overrides because
dumping core files from all processes is not scalable.

36 S–2396–20

Programming Considerations [4]

4.3.7 Page Size

The yod -small_pages option allows you to specify 4 KB pages instead of the
default 2 MB pages. Locality of reference affects the optimum choice between the
default 2 MB pages and the 4 KB pages. Because it is often difficult to determine
how the compiler is allocating your data, the best approach is to try both the
default and the -small_pages option and compare performance numbers.

Note: For each 1 GB of memory, 2 MB of page table space are required.

The Catamount getpagesize() function returns 4 KB.

4.3.8 Resource Limits

Because a Catamount application has dedicated use of the processor and physical
memory on a compute node, many resource limits return RLIM_INFINITY. Keep
in mind that while Catamount itself has no limitation on file size or the number
of open files, the specific file systems on the Linux service partition may have
limits that are unknown to Catamount.

On Catamount, the setrlimit() function always returns success when given
a valid resource name and a non-NULL pointer to an rlimit structure. The
rlimit value is never used because Catamount gives the application dedicated
use of the processor and physical memory.

4.3.9 Parallel Programming Models

The MPI and SHMEM parallel programming models are supported on
Catamount applications. OpenMP is not supported on Catamount.

S–2396–20 37

Cray XT™ Series Programming Environment User’s Guide

38 S–2396–20

Compiler Overview [5]

The Cray XT series Programming Environment includes Fortran, C, and C++
compilers from PGI, GNU, and PathScale. You access the compilers through
Cray XT series compiler drivers. The compiler drivers perform the necessary
initializations and load operations, such as linking in the header files and system
libraries (libc.a and libmpich.a, for example) before invoking the compilers.

5.1 Setting Your Target Architecture

Before you begin to compile programs, you must verify that the target
architecture is set correctly. The target architecture is used by the compilers
and linker in creating executables to run on either CNL or Catamount
compute nodes; it is set automatically when you log in. If the compute
nodes are running CNL, the xtpe-target-cnl module is loaded and the
XTPE_COMPILE_TARGET environment variable is set to linux. If the compute
nodes are running Catamount, the xtpe-target-catamount module is loaded
and XTPE_COMPILE_TARGET is set to catamount.

To determine the current target architecture, use the module list command.
Either xtpe-target-cnl or xtpe-target-catamount will be loaded.

You cannot run a CNL application on compute nodes running Catamount
nor a Catamount application on compute nodes running CNL. However, you
can create CNL or Catamount executables at any time by configuring your
environment properly.

For example, if the target architecture is catamount and you want to create
executable to run under CNL, swap xtpe-target modules:

% module swap xtpe-target-catamount xtpe-target-cnl

S–2396–20 39

Cray XT™ Series Programming Environment User’s Guide

5.2 Using Compilers

The syntax for invoking the compiler drivers is:

% compiler_command [PGI_options|GCC_options|PathScale_options]

filename,...

For example, to use the PGI Fortran compiler to compile prog1.f90 and create
default executable a.out to be run on CNL compute nodes, first verify that the
following modules have been loaded:

PrgEnv-pgi

xtpe-target-cnl

Then use the following command:

% ftn prog1.f90

If you next want to use the PathScale C compiler to compile prog2.c and create
default executable a.out to be run on Catamount compute nodes, use the
following commands:

% module swap PrgEnv-pgi PrgEnv-pathscale

% module swap xtpe-target-cnl xtpe-target-catamount

Then invoke the C compiler:

% cc prog2.c

Note: Verify that your CNL and Catamount executables are stored in separate
directories or differentiated by file name. If you try to run a CNL application
when Catamount is running or a Catamount application when CNL is
running, your application will abort.

5.2.1 Using PGI Compilers

To use the PGI compilers, run the module list command to verify that the
PrgEnv-pgi module is loaded. If it is not, use a module swap command,
such as:

% module swap PrgEnv-gnu PrgEnv-pgi

PrgEnv-pgi loads the product modules that define the system paths and
environment variables needed to use the PGI compilers.

For a description of new and modified PGI compiler features, see the PGI Server
7.0 and Workstation 7.0 Installation and Release Notes.

40 S–2396–20

Compiler Overview [5]

Note: When linking in ACML routines, you must compile and link all program
units with -Mcache_align or an aggregate option such as fastsse, which
incorporates -Mcache_align.

The commands for invoking the PGI compilers and the source file extensions are:

Table 3. PGI Compiler Commands

Compiler Command Source File

C compiler cc filename.c

C++ compiler CC filename.C

Fortran 90/95 compiler ftn filename.f (fixed source)

filename.f90,
filename.f95,
filename.F95 (free source)

FORTRAN 77 compiler f77 filename.f77

!
Caution: To invoke a PGI compiler, use the cc, CC, ftn, or f77 command.
If you invoke a compiler directly using a pgcc, pgCC, pgf95, or pgf77
command, the resulting executable will not run on a Cray XT series system.

The cc(1), CC(1), ftn(1), and f77(1) man pages contain information about
the compiler driver commands, whereas the pgcc(1), pgCC(1), pgf95(1),
and pgf77(1) man pages contain descriptions of the PGI compiler command
options.

The PGI User's Guide and the PGI Fortran Reference manual
include information about compiler features unique to Cray (see
http://www.pgroup.com/resources/docs.htm).

Examples of compiler commands:

% cc -c myCprog.c

% CC -o my_app myprog1.o myCCprog.C

% ftn -fastsse -Mipa=fast prog.f sample1.f

% cc -c c1.c

% ftn -o app1 f1.f90 c1.o

To verify that you are using the correct version of a compiler, use the -V option
on a cc, CC, ftn, or f77 command.

S–2396–20 41

http://www.pgroup.com/resources/docs.htm

Cray XT™ Series Programming Environment User’s Guide

Note: The -Mconcur (auto-concurrentization of loops) option documented in
the PGI manuals is not supported on Cray XT series systems.

5.2.2 Using GNU Compilers

To use the GNU compilers, run the module list command to verify that the
PrgEnv-gnu module is loaded. If it is not, use a module swap command,
such as:

% module swap PrgEnv-pgi PrgEnv-gnu

PrgEnv-gnu loads the product modules that define the system paths and
environment variables needed to use the GNU compilers.

Both GCC 3.3.3 and 4.2.1 are supported. GCC 3.3.3 includes the FORTRAN 77,
C, and C++ compilers; GCC 4.2.1 includes the Fortran 95, C, and C++ compilers.
The f77 command compiles FORTRAN 77 programs. You can use the ftn
command to compile either Fortran 95 or FORTRAN 77 programs.

To determine whether the desired GCC module is loaded, use the module list
command. If the desired module is not loaded, use the module swap command,
such as:

% module swap gcc/3.3.3 gcc/4.2.1

The commands for invoking the GNU compilers and the source file extensions
are:

Table 4. GNU Compiler Commands

Compiler Command Source File

C compiler cc filename.c

C++ compiler CC filename.cc,
filename.c++,
filename.C

Fortran 95 and FORTRAN 77
compilers (GCC 4.1.1 and later)

ftn filename.f,
filename.f90,
filename.f95

FORTRAN 77 compiler (GCC 3.2.3
only)

f77 filename.f

42 S–2396–20

Compiler Overview [5]

The Using the GNU Compiler Collection (GCC) manual provides general
information about the GNU compilers. The GNU Fortran 95 Compiler Manual and
the G77 Manual include information about compiler features unique to Cray (see
http://gcc.gnu.org/onlinedocs/).

!
Caution: To invoke a GNU compiler, use the cc, CC, ftn, or f77 command.
If you invoke a compiler directly using a gcc, g++, gfortran, or g77
command, the resulting executable will not run on a Cray XT series system.

The cc(1), CC(1), ftn(1), and f77(1) man pages contain information about
the compiler driver commands, whereas the gcc(1), g++(1), gfortran(1),
and g77(1) man pages contain descriptions of the GNU C compiler command
options.

Examples of GNU compiler commands (assuming the PrgEnv-gnu module is
loaded):

% cc -c c1.c

% CC -o app1 prog1.o C1.C

% ftn -o mpiapp mpi1.f mpi2.o

% f77 -o sample1 sample1.f

To verify that you are using the correct version of a GNU compiler, use the
--version option on a cc, CC, ftn, or f77 command.

Note: To use CrayPat with a GNU program to trace functions, use the
-finstrument-functions option instead of -Mprof=func when
compiling your program.

5.2.3 Using PathScale Compilers

To use the PathScale compilers, run the module list command to verify that
the PrgEnv-pathscale module is loaded. If it is not, use a module swap
command, such as:

% module swap PrgEnv-pgi PrgEnv-pathscale

PrgEnv-pathscale loads the product modules that define the system paths
and environment variables needed to use the PathScale compilers.

S–2396–20 43

http://gcc.gnu.org/onlinedocs/

Cray XT™ Series Programming Environment User’s Guide

The commands for invoking the PathScale compilers and the source file
extensions are:

Table 5. PathScale Compiler Commands

Compiler Command Source File

C compiler cc filename.c

C++ compiler CC filename.CC

filename.cc

filename.cpp

filename.cxx

Fortran 90/95 and FORTRAN
77 compilers

ftn filename.f (fixed source, no
preprocessing)

filename.f90 (free source, no
preprocessing)

filename.f95 (free source, no
preprocessing)

filename.F (fixed source,
preprocessing)

filename.F90 (free source,
preprocessing)

filename.F95 (free source,
preprocessing)

To verify that you are using the correct version of a PathScale compiler, use the
-version option on a cc , CC, or ftn command.

44 S–2396–20

Compiler Overview [5]

!
Caution: To invoke a PathScale compiler, use either the cc, CC, or ftn
command. If you invoke a compiler directly using a pathcc, pathCC, or
path95 command, the resulting executable will not run on a Cray XT series
system.

The cc(1), CC(1), and ftn(1) man pages contain information about the
compiler driver commands, whereas the pathcc(1), pathCC(1), and
path95(1) man pages contain descriptions of the PathScale compiler
command options.

The eko(7) man page gives the complete list of options and flags for the
PathScale compiler suite.

Examples of PathScale compiler commands (assuming the PrgEnv-pathscale
module is loaded):

% cc -c c1.c

% CC -o app1 prog1.o C2.C

% ftn -o sample1 sample1.f

For more information about using the compiler commands, see the PathScale
manuals at http://www.pathscale.com/docs/html and the following man
pages:

• Introduction to PathScale compilers: pathscale-intro(1) man page

• C compiler: Cray cc(1) man page and PathScale pathcc(1) and eko(7) man
pages

• C++ compiler: Cray CC(1) man page and PathScale pathCC(1) and eko(7)
man pages

• Fortran compiler: Cray ftn(1) man page and PathScale path95(1) and
eko(7) man pages

S–2396–20 45

http://www.pathscale.com/docs/html

Cray XT™ Series Programming Environment User’s Guide

46 S–2396–20

Getting Compute Node Status [6]

Before running applications, you should check the status of the compute nodes.

First, use either the xtprocadmin -A or cnselect -L osclass command to
find out whether CNL or Catamount is running on the compute nodes.

For the xtprocadmin -A report, the OS field value is CNL or Catamount for
all compute nodes, and service for all service nodes. For the cnselect -L
osclass report, osclass is 1 for Catamount and 2 for CNL.

% xtprocadmin -A

NID (HEX) NODENAME TYPE ARCH OS CORES AVAILMEM PAGESZ CLOCKMHZ

<snip>

93 0x5d c0-0c2s7n1 compute xt CNL 1 2000 4096 2400

94 0x5e c0-0c2s7n2 compute xt CNL 1 2000 4096 2400

95 0x5f c0-0c2s7n3 compute xt CNL 1 2000 4096 2400

128 0x80 c1-0c0s0n0 service xt (service) 1 4000 4096 2400

131 0x83 c1-0c0s0n3 service xt (service) 1 4000 4096 2400

132 0x84 c1-0c0s1n0 service xt (service) 1 2000 4096 2400

<snip>

% cnselect -L osclass

2

Then use the xtshowmesh or xtshowcabs command. These utilities show node
status (up or down, allocated to interactive or batch processing, free or in use).
Each character in the display represents a single node. For systems running a
large number of jobs, more than one character may be used to designate a job.

% xtshowmesh

Compute Processor Allocation Status as of Wed Sep 12 08:06:28 2007

C 0 (X dir) C 1 (X dir) C 2 (X dir) C 3 (X dir) C 4 (X dir) C 5 (X dir)

S–2396–20 47

Cray XT™ Series Programming Environment User’s Guide

Z dir-> 01234567 01234567 01234567 01234567 01234567 01234567

Y dir 0 SSSSS-- --------

1 ac --------

2 b- --------

3 SSSSSS-- --------

4 -------- --------

5 -------- --------

6 d------- --------

7 -------- --------

8 -------- --------

9 -------- --------

10 -------- --------

11 -------- --------

C 2 (X dir) C 3 (X dir) C 4 (X dir) C 5 (X dir) C 6 (X dir) C 7 (X dir)

Z dir-> 01234567 01234567 01234567 01234567 01234567 01234567

Y dir 0 -------- --------

1 -------- --------

2 -------- --------

3 -------- --------

4 -------- --------

5 -------- --------

6 -------- --------

7 -------- --------

8 -------- --------

9 -------- --------

10 -------- --------

11 -------- --------

C 4 (X dir) C 5 (X dir) C 6 (X dir) C 7 (X dir) C 8 (X dir) C 9 (X dir)

Z dir-> 01234567 01234567 01234567 01234567 01234567 01234567

Y dir 0

1

2

3

4

5

6

7

8

9

48 S–2396–20

Getting Compute Node Status [6]

10

11 S

C 6 (X dir) C 7 (X dir) C 8 (X dir) C 9 (X dir)

Z dir-> 01234567 01234567 01234567 01234567

Y dir 0 -------- --------

1 -------- --------

2 -------- --------

3 -------- --------

4 -------- --------

5 -------- --------

6 -------- --------

7 -------- --------

8 -------- --------

9 -------- --------

10 -------- --------

11 -------- --------

C 8 (X dir) C 9 (X dir)

Z dir-> 01234567 01234567

Y dir 0 -------- --------

1 -------- --------

2 -------- --------

3 -------- --------

4 -------- --------

5 -------- --------

6 -------- --------

7 -------- --------

8 -------- --------

9 -------- --------

10 -------- --------

11 -------- --------

Legend:

nonexistent node S service node

; free interactive compute CNL - free batch compute node CNL

A allocated, but idle compute node ? suspect compute node

X down compute node Y down or admindown service node

Z admindown compute node R node is routing

Available compute nodes: 0 interactive, 740 batch

S–2396–20 49

Cray XT™ Series Programming Environment User’s Guide

ALPS JOBS LAUNCHED ON COMPUTE NODES

Job ID User Size Age command line

--- ------ -------- ----- --------------- ----------------------------------

a 30626 user1 1 1h36m arps_mpi

b 30625 user1 1 1h36m pop.2

c 30627 user1 1 1h36m aldh2_hydride

d 30631 user1 1 1h36m pop.1

% xtshowcabs

Compute Processor Allocation Status as of Wed Sep 12 08:09:40 2007

C0-0 C1-0 C2-0 C3-0 C4-0 C5-0 C6-0 C7-0

n3 -------- -------- -------- -------- -------- -------- -------- --------

n2 -------- -------- -------- -------- -------- -------- -------- --------

n1 -------- -------- -------- -------- -------- -------- -------- --------

c2n0 -------- -------- -------- -------- -------- -------- -------- --------

n3 -------- -------- -------- -------- -------- -------- -------- --------

n2 d------- -------- -------- -------- -------- -------- -------- --------

n1 -------- -------- -------- -------- -------- -------- -------- --------

c1n0 -------- -------- -------- -------- -------- -------- -------- --------

n3 SSSSSS-- -------- -------- -------- -------- -------- -------- --------

n2 b- -------- -------- -------- -------- -------- -------- --------

n1 ac -------- -------- -------- -------- -------- -------- --------

c0n0 SSSSSS-- -------- -------- -------- -------- -------- -------- --------

s01234567 01234567 01234567 01234567 01234567 01234567 01234567 01234567

Legend:

nonexistent node S service node

; free interactive compute CNL - free batch compute node CNL

A allocated, but idle compute node ? suspect compute node

X down compute node Y down or admindown service node

Z admindown compute node R node is routing

Available compute nodes: 0 interactive, 740 batch

ALPS JOBS LAUNCHED ON COMPUTE NODES

Job ID User Size Age command line

--- ------ -------- ----- --------------- ----------------------------------

a 30626 user1 1 1h40m arps_mpi

b 30625 user1 1 1h40m pop.2

c 30627 user1 1 1h40m aldh2_hydride

d 30631 user1 1 1h40m pop.1

50 S–2396–20

Getting Compute Node Status [6]

Use xtshowmesh on systems with topology class 0 or 4 and xtshowcabs on
systems with topology class 1, 2, or 3. Contact your system administrator if you
do not know the topology class of your system.

Note: If xtshowcabs or xtshowmesh indicates that no compute nodes
have been allocated for interactive processing, you can still run your job
interactively by using the PBS Pro qsub -I command and then, when your
job has been queued, using either the aprun or yod application launch
command.

For more information, see the xtprocadmin(1), xtshowmesh(1), and
xtshowcabs(1) man pages.

S–2396–20 51

Cray XT™ Series Programming Environment User’s Guide

52 S–2396–20

Running CNL Applications [7]

The aprun utility launches applications on CNL compute nodes. The utility
submits applications to the Application Level Placement Scheduler (ALPS) for
placement and execution, forwards the user's environment, forwards signals, and
manages the stdin, stdout, and stderrr streams.

This chapter describes how to run applications interactively on CNL compute
nodes and get application status reports. For a description of batch job
processing, see Chapter 9, page 67.

7.1 aprun Command

You use the aprun command to specify the resources your application requires,
request application placement, and initiate application launch.

The format of the aprun command is:

aprun [-n pes] [-N pes_per_node] [-d depth] [-L nodes]

[other arguments] executable_name

where:

aprun option Description

-n pes The number of processing elements (PEs) needed
for the application. A PE is an instance of an
ALPS-launched executable. The -n option applies
to both single-core and dual-core systems.

-N pes_per_node The number of PEs per node. The -N option
applies only to dual-core systems.

-d depth The number of threads per PE. The default is 1.
The -d option applies only to dual-core systems.
Compute nodes must have at least depth cores.

-L nodes A user-defined placement node list. The node
list must contain at least enough nodes to meet
the application resource requirements. If the
placement node list is too short for the -n, -d,
and -N options, a fatal error is produced. See the
cnselect(1) man page for details.

S–2396–20 53

Cray XT™ Series Programming Environment User’s Guide

You use the -n pes option to request processing elements (PEs). PEs are instances
of the executable.

Note: Verify that you are in a Lustre-mounted directory before using the
aprun command (see Section 2.4, page 11).

For single-core nodes, ALPS creates -n PEs and launches them on -n nodes.

For example, the command:

% aprun -n 64 ./prog1

creates 64 instances of prog1 and launches them on 64 nodes.

For dual-core nodes, ALPS creates -n PEs and uses the -N pes_per_node value
in determining where to place them. Whenever possible, ALPS packs the PEs,
using the smallest number of nodes to fulfill the -n requirements. If you specify
-N 1, ALPS assigns one PE per node.

For example, the command:

% aprun -n 32 ./prog1

creates 32 instances of prog1 and launches them on both cores of 16 nodes.

In contrast, the command:

% aprun -n 32 -N 1 ./prog1

creates 32 instances of prog1 and launches them on one core of 32 nodes. The
other 32 cores are unused.

For OpenMP applications, use the -d option to specify the depth (number of
threads) of each PE. ALPS creates -n pes instances of the executable, and the
executable spawns depth-1 additional threads per PE.

For example, the command:

% aprun -n 8 -d 2 ./openmp1

creates 8 instances of openmp1 on 8 nodes. Each PE spawns one additional
thread.

For examples of CNL applications, see Chapter 13, page 95. For additional
information on aprun, see the aprun(1) man page.

54 S–2396–20

Running CNL Applications [7]

7.2 apstat Command

The apstat command provides status information about reservations, compute
resources, and pending and placed applications. The format of the apstat
command is:

apstat [-a [apid [apid...]]] [-n] [-p] [-r] [other arguments]

You can use apstat to display the status of all applications (a), specific
applications (a apid), nodes (n), pending applications (p), and confirmed and
claimed reservations (r).

For example:

% apstat -a

Placed Apid ResId User PEs Nodes Age Command

48062 39 user1 2 1 2h39m test1

48108 1588 user2 4 1 0h15m mpi2

48109 1589 user3 4 1 0h01m omp1

An application's ID (Apid) in the apstat display is also displayed after aprun
execution results, such as:

% aprun -n 2 -d 2 ./omp1

Hello from rank 0 (thread 0) on nid00540 <-- MASTER

Hello from rank 1 (thread 0) on nid00541 <-- MASTER

Hello from rank 0 (thread 1) on nid00540 <-- slave

Hello from rank 1 (thread 1) on nid00541 <-- slave

Application 48109 resources: utime 0, stime 0%

For further information, see the apstat(1) man page.

7.3 cnselect Command

The aprun utility supports manual and automatic node selection. For manual
node selection, first use the cnselect command to get a list of compute nodes
that meet the criteria you specify. Then use the aprun -L nodes option to launch
the application. If the number of nodes in the -L nodes list is greater than the
aprun n value, ALPS launches the application on n nodes from the -L nodes list.

The format of the cnselect command is:

cnselect [-c] [-l] [[-L] fieldname|[-e] expression]

[other arguments]

S–2396–20 55

Cray XT™ Series Programming Environment User’s Guide

where:

• -c gives a count of the number of nodes rather than a list of the nodes
themselves.

• -l lists names of fields in the compute nodes attributes database.

• -L fieldname lists the current possible values for a given field.

• [-e] expression queries the compute node attributes database.

You can use cnselect to get a list of nodes selected by such characteristics
as number of cores per node (coremask), amount of memory on the node
(in megabytes), and processor speed (in megahertz). For example, to run an
application on dual-core nodes with 2 GB of memory or more, use:

% cnselect availmem .ge. 2000 .and. coremask .gt. 1

44-63,76,82

% aprun -n 16 -L 44-59 ./app1

If you do not include -L option on the aprun command, ALPS automatically
places the application per available resources.

7.4 Memory Available to CNL Applications

When running large applications, it is important to understand how much
memory will be available per node for your application.

CNL uses approximately 250 MB of memory. The remaining memory is available
for the user program executables; user data arrays; the stacks, libraries and
buffers; and SHMEM symmetric stack heap. For a node with 2.147 GB of
memory, 1.897 GB of memory is available for applications. The default stack size
is 16 MB. The memory used for the MPI libraries is approximately 72 MB.

Note: The actual amount of memory CNL uses varies depending on the total
amount of memory on the node and the OS services configured for the node.

56 S–2396–20

Running CNL Applications [7]

You can use the aprun -m size option to specify the per-PE memory limit. For
example, the following aprun command launches program1 on cores 0 and 1
of a compute node with 4 GB of available memory:

% aprun -n 2 -N 2 -m2000 ./program1

hello from pe 0 of 2

hello from pe 1 of 2

PE 1: sizeof(long) = 8

PE 1: The answer is: 42

Application 14154 resources: utime 0, stime 0

You can change MPI buffer sizes and stack space from the defaults by setting
certain environment variables or aprun options. For more details, see the
aprun(1) and intro_mpi(3) man pages.

7.5 Launching an MPMD Application

The aprun utility supports multiple-program, multiple-data (MPMD)
applications. To run an MPMD application under aprun, use the -n pes
executable1 : -n pes executable2 : ... format. To communicate with each other, all
of the executables share the same MPI_COMM_WORLD process communicator.

This command launches 128 instances of program1 and 256 instances of
program2:

aprun -n 128 ./program1: -n 256 ./program2

7.6 Managing Compute Node Processors from an MPI Program

Programs that use MPI library routines for parallel control and communication
should call the MPI_Finalize() routine at the conclusion of the program. This
call waits for all processing elements to complete before exiting.

S–2396–20 57

Cray XT™ Series Programming Environment User’s Guide

However, if one of the processes fails to call MPI_Finalize() for any reason,
the program never completes and aprun stops responding. There are two ways
to prevent this behavior:

• Use the PBS Pro elapsed (wall clock) time limit to terminate the job after a
specified time limit (such as -l walltime=2:00:00).

• Use the aprun -t sec option to terminate the offending processes. This
option specifies the per-process CPU time limit in seconds. A process will
terminate only if it reaches the specified amount of CPU time (not wallclock
time).

For example, if you use:

% aprun -t 120 ./myprog1

and a process consumes more than 2 minutes of CPU time, aprun will
terminate the application.

7.7 Input and Output Modes under aprun

The aprun utility handles standard input (stdin) on behalf of the user and
handles standard output (stdout) and standard error messages (stderr) for
user applications.

For other I/O considerations, see Section 4.2.2, page 27.

7.8 Signal Handling under aprun

The aprun utility catches and forwards these signals to an application: SIGHUP,
SIGINT, SIGQUIT, SIGTERM, SIGABRT, SIGUSR1, and SIGUSR2. The aprun
utility ignores SIGPIPE and SIGTTIN signals. All other signals are left at
their default behavior and are not forwarded to an application. Those default
behaviors cause aprun to be terminated, resulting in the application being
terminated by a SIGKILL signal.

58 S–2396–20

Running Catamount Applications [8]

The yod utility launches applications on Catamount compute nodes. When you
start a yod process, the application launcher coordinates with the Compute
Processor Allocator (CPA) to allocate nodes for the application and then uses
Process Control Threads (PCTs) to transfer the executable to the compute nodes.
While the application is running, yod provides I/O services for the application,
propagates signals, and participates in cleanup when the application terminates.

This chapter describes how to run applications interactively on Catamount
compute nodes. For a description of batch job processing, see Chapter 9, page 67.

8.1 yod Command

When launching an application with the yod command, you can specify the
number of processors to allocate to the application.

The format of the yod command is:

% yod -sz n [other arguments] executable_name

where n is the number of processors on which the application will run.

The yod -sz, -size, and -np options are synonymous.

The following paragraphs describe the differences in the way processors are
allocated on single-core and dual-core processor systems.

• Running applications on single-core processor systems

On single-core processor systems, each compute node has one single-core
AMD Opteron processor. Applications are allocated -sz nodes.

For example, the command:

% yod -sz 6 prog1

launches prog1 on six nodes.

Single-core processing is the default. However, sites can change the default to
dual-core processor mode. Use -SN if the default is dual-core processor mode
and you want to run applications in single-core processor mode.

S–2396–20 59

Cray XT™ Series Programming Environment User’s Guide

Note: The yod -VN option turns on virtual node processing mode. The yod
utility runs the program on both cores of a dual-core processor. If you use
the -VN option on a single-core system, the application load will fail.

• Running applications on dual-core processor systems

On dual-core processor systems, each compute node has one dual-core AMD
Opteron processor. The processors are managed by the Catamount Virtual
Node (CVN) kernel. To launch an application, you must include the -VN
option on the yod command unless your site has changed the default.

On a dual-core system, if you do not include the -VN option, your program
will run on one core per node, with the other core idle. You may do this if
you must use all the memory on a node for each processing element or if you
want the fastest possible run time and do not mind letting the second core
on each node sit idle.

8.2 cnselect Command

The yod utility supports automatic and manual node selection. To use manual
node selection, first use the cnselect command to get a list of compute nodes
that meet the criteria you specify. Then use the yod -list processor-list option to
launch the application. If the number of nodes in the list is greater than the -sz n
value, yod selects n of the processor-list nodes on which to launch the application.

The format of the cnselect command is:

cnselect [-c] [-l] [[-L] fieldname|[-e] expression]

[other arguments]

where:

• -c gives a count of the number of nodes rather than a list of the nodes
themselves.

• -l lists names of fields in the compute nodes attributes database.

• [-L] fieldname lists the current possible values for a given field.

• [-e] expression queries the compute node attributes database.

60 S–2396–20

Running Catamount Applications [8]

You can use cnselect to get a list of nodes selected by such characteristics as
number of cores per node (coremask), available memory (in megabytes), and
processor speed (in megahertz). For example, to run an application on dual-core
nodes with 2 GB of memory or more, use:

% cnselect -y availmem .ge. 2000 .and. coremask .gt. 1

44..63,76,82

% yod -VN -sz 16 -list 44..59 ./app1

Note: When using cnselect with yod, you need to include the -y option
on the cnselect command. This option causes cnselect to list ranges of
nodes in yod format (n..n).

If you do not include -list option, yod automatically places the application
per available resources.

8.3 Memory Available to Catamount Applications

When running large applications on a dual-core processor system, it is important
to understand how much memory will be available per node for your job.

If you are running in single-core mode on a dual-core system, Catamount (the
kernel plus the process control thread (PCT)) uses approximately 120 MB of
memory. The remaining memory is available for the user program executable,
user data arrays, the stack, libraries and buffers, and SHMEM symmetric stack
heap.

For example, on a node with 2.147 GB of memory, memory is allocated as
follows:

Catamount 120 MB (approximate)

Executable, data arrays, stack, libraries and
buffers, SHMEM symmetric stack heap

2027 MB (approximate)

If you are running in dual-core mode, Catamount uses approximately 120 MB
of memory (the same as for single-core mode). The PCT divides the remaining
memory in two, allocating half to each core. The memory allocated to each core
is available for the user executable, user data arrays, stack, libraries and buffers,
and SHMEM symmetric stack heap.

S–2396–20 61

Cray XT™ Series Programming Environment User’s Guide

For example, on a node with 2.147 GB of memory, memory is allocated as
follows:

Catamount 120 MB (approximate)

Executable, data arrays, stack, libraries and
buffers, SHMEM symmetric stack heap for core
0

1013 MB (approximate)

Executable, data arrays, stack, libraries and
buffers, SHMEM symmetric stack heap for core
1

1013 MB (approximate)

The default stack size is 16 MB.

The memory used for the Lustre and MPI libraries is as follows:

Lustre library 17 MB (approximate)

MPI library and default buffer 72 MB (approximate)

You can change MPI buffer sizes and stack space from the defaults by setting
certain environment variables or yod options. For more details, see the yod(1)
and intro_mpi man(3) pages.

8.4 Launching an MPMD Application

The yod utility supports multiple-program, multiple-data (MPMD) applications
of up to 32 separate executable images. To run an MPMD application under
yod, first create a loadfile where each line in the file is the yod command for one
executable image. To communicate with each other, all of the executable images
launched in a loadfile share the same MPI_COMM_WORLD process communicator.

62 S–2396–20

Running Catamount Applications [8]

The following yod options are valid within a loadfile:

-heap size

Specifies the number of bytes to reserve for the heap. The
minimum value of size is 16 MB. On dual-core systems, each core
is allocated size bytes.

-list processor-list

Lists the candidate compute nodes on which to run the
application, such as: -list 42,58,64..100,150..200. Use
the cnselect command with the -y option to generate the list.
See the cnselect(1) man page for details.

-shmem size

Specifies the number of bytes to reserve for the symmetric heap
for the SHMEM library. The heap size is rounded up in order to
address physical page boundary issues. The minimum value of
size is 2 MB. On dual-core systems, each core is allocated size
bytes.

-size|-sz|-np n

Specifies the number of processors on which to run the
application. In SN mode, -size n is the number of nodes. In
VN mode, -size n is the number of cores. You can use the
-size option in conjunction with the -list option to launch an
application on a subset of the -list processor-list nodes.

-stack size

Specifies the number of bytes to reserve for the stack. On
dual-core systems, each core is allocated size bytes.

This loadfile script launches program1 on 128 nodes and program2 on 256
nodes:

#loadfile

yod -sz 128 program1

yod -sz 256 program2

To launch the application, use:

% yod -F loadfile

S–2396–20 63

Cray XT™ Series Programming Environment User’s Guide

8.5 Managing Compute Node Processors from an MPI Program

Programs that use MPI library routines for parallel control and communication
should call the MPI_Finalize() routine at the conclusion of the program.
This call waits for all processing elements to complete before exiting. However,
if one of the processes fails to start or stop for any reason, the program never
completes and yod stops responding. To prevent this behavior, use the yod
-tlimit option to terminate the application after a specified number of seconds.
For example,

% yod -tlimit 30K myprog1

terminates all processes remaining after 30K (30 * 1024) seconds so that
MPI_Finalize() can complete. You can also use the environment variable
YOD_TIME_LIMIT. The time limit specified on the command line overrides the
value specified by the environment variable.

8.6 Input and Out Modes under yod

All standard I/O requests are funneled through yod. The yod utility handles
standard input (stdin) on behalf of the user and handles standard output
(stdout) and standard error messages (stdout) for user applications.

For other I/O considerations, see Section 4.3.2, page 31.

8.7 Signal Handling under yod

The yod utility uses two signal handlers, one for the load sequence and one for
application execution. During the load operation, any signal sent to yod during
the load operation terminates the operation. After the load is completed and
all nodes of the application have signed in with yod, the second signal handler
takes over.

During the execution of a program, yod interprets most signals as being intended
for itself rather than the application. The only signals propagated to the
application are SIGUSR1, SIGUSR2, and SIGTERM. All other signals effectively
terminate the running application. The application can ignore the signals that
yod passes along to it; SIGTERM, for example, does not necessarily terminate an
application. However, a SIGINT delivered to yod initiates a forced termination
of the application.

64 S–2396–20

Running Catamount Applications [8]

8.8 Associating a Project or Task with a Job Launch

Use the -Account "project task" or -A "project task" yod option or the -A
"project task" qsub option to associate a job launch with a particular project
and task. Use double quotes around the string that specifies the project and,
optionally, task values. For example:

% yod -Account "grid_test_1234 task1" -sz 16 myapp123

You can also use the environment variable XT_ACCOUNT="project task" to specify
account information. The -Account or -A option overrides the environment
variable.

If yod is invoked from a batch job, the qsub -A account information takes
precedence; yod writes a warning message to stderr in this case.

S–2396–20 65

Cray XT™ Series Programming Environment User’s Guide

66 S–2396–20

Using PBS Pro [9]

Your Cray XT series Programming Environment may include the optional PBS
Pro batch scheduling software package from Altair Grid Technologies. This
section provides an overview of job processing under PBS Pro.

The Cray XT series system can be configured with a given number of interactive
job processors and a given number of batch processors. A job that is submitted as
a batch process can use only the processors that have been allocated to the batch
subsystem. If a job requires more processors than have been allocated for batch
processing, it remains in the batch queue but never exits.

Note: At any time, the system administrator can change the designation of any
node from interactive to batch or vice versa. However, this does not affect jobs
already running on those nodes. It applies only to jobs that are in the queue
and to subsequent jobs.

The basic process for creating and running batch jobs is to create a PBS Pro job
script that includes aprun or yod commands and then use the PBS Pro qsub
command to run the script.

9.1 Creating Job Scripts

A job script may consist of directives, comments, and executable statements.
A PBS Pro directive provides a way to specify job attributes apart from the
command line options:

#PBS -N job_name

#PBS -l resource_type=specification

#

command

command

...

PBS Pro provides a number of resource_type options for specifying, allocating,
and scheduling compute node resources, such as mppwidth (number of
processing elements), mppdepth (number of threads), and mppnodes
(manual node placement list). See Table 6, page 68, Table 7, page 69, and the
pbs_resources(7B) man page for details.

S–2396–20 67

Cray XT™ Series Programming Environment User’s Guide

9.2 Submitting Batch Jobs

To submit a job to the batch scheduler, use the following commands:

% module load pbs

% qsub [-l resource_type=specification] jobscript

where jobscript is the name of a job script that includes one or more aprun or
yod commands.

The qsub command scans the lines of the script file for directives. An initial
line in the script that begins with the characters #! or the character: is ignored
and scanning starts at the next line. Scanning continues until the first executable
line (that is, a line that is not blank, not a directive line, nor a line whose first
non-white-space character is #). If directives occur on subsequent lines, they
are ignored.

If a qsub option is present in both a directive and on the command line, the
command line takes precedence. If an option is present in a directive and not on
the command line, that option and its argument, if any, are processed as if you
included them on the command line.

9.2.1 Using aprun with qsub

For CNL jobs, the qsub -l resource_type=specification options and aprun options
are defined as follows:

Table 6. aprun versus qsub Options

aprun option qsub -l option Description

-n 4 -l mppwidth=4 Width (number of PEs)

-d 2 -l mppdepth=2 Depth (number of OpenMP threads)

-N 1 -l mppnppn=1 Number of PEs per node

-L 5,6,7 -l mppnodes=\"5,6,7\" Node List

-m 1000m -l mppmem=1000mb Memory per PE

For examples of batch jobs that use aprun, see Chapter 13, page 95.

68 S–2396–20

Using PBS Pro [9]

9.2.2 Using yod with qsub

On a single-core system, the PBS Pro mppwidth parameter is equivalent to the
yod sz option.

On a dual-core system, the PBS Pro mppwidth parameter is not equivalent to the
yod sz option. The PBS Pro mppwidth parameter refers to the number of nodes
to be allocated for a job. The yod sz option refers to the number of cores to be
allocated for a job (two cores per node).

For example, the following commands:

% qsub -I -V -l mppwidth=6

% yod -size 12 -VN prog1

allocate 6 nodes to the job and launch prog1 on both cores of each of the 6 nodes.

For Catamount jobs, the qsub -l resource_type=specification options and yod
options are defined as follows:

Table 7. yod versus qsub Options

yod option qsub -l option Description

-sz 4 -l mppwidth=4 Number of processors (single core)

-VN -sz 8 -l mppwidth=4 Number of processors (dual core)

-list 5,6,7 -l mppnodes=\"5,6,7\" Node List

For examples of batch jobs that use yod, see Chapter 14, page 133.

9.3 Terminating Failing Processes in an MPI Program

Jobs that use MPI library routines for parallel control and communication should
call the MPI_Finalize() routine at the conclusion of the program. This call
waits for all processing elements to complete before exiting. However, if one of
the processes fails to start or stop for any reason, the program never completes
and aprun or yod stops responding. To prevent this behavior, use the PBS
Pro time limit to terminate remaining processes so that MPI_Finalize() can
complete.

S–2396–20 69

Cray XT™ Series Programming Environment User’s Guide

9.4 Getting Jobs Status

The qstat command displays the following information about all jobs currently
running under PBS Pro:

• The job identifier (Job id) assigned by PBS Pro

• The job name (Name) given by the submitter

• The job owner (User)

• CPU time used (Time Use)

• The job state (S): whether job is exiting (E), held (H), in the queue (Q), running
(R), suspended (S), being moved to a new location (T), or waiting for its
execution time (W)

• The queue (Queue) in which the job resides

For example:

% qstat

Job id Name User Time Use S Queue

------ ---------------- ---------------- -------- - -----

84.nid00003 test_ost4_7 usera 03:36:23 R workq

33.nid00003 run.pbs userb 00:04:45 R workq

34.nid00003 run.pbs userb 00:04:45 R workq

35.nid00003 STDIN userc 00:03:10 R workq

If the -a option is used, queue information is displayed in the alternative format.

% qstat -a

nid00003:

Time In Req'd Req'd Elap

Job ID Username Queue Jobname SessID Queue Nodes Time S Time

------ -------- -------- ---------- ------ ------- ------ ----- - -----

163484 usera workq test_ost4_ 9143 003:48 64 -- R 03:47

163533 userb workq run.pbs 15040 000:48 64 00:30 R 00:15

163534 userb workq run.pbs 15045 000:48 64 00:30 R 00:15

163536 userc workq STDIN 15198 000:10 5 -- R 00:09

Total generic compute nodes allocated: 197

For details, see the qstat(1B) man page.

70 S–2396–20

Using PBS Pro [9]

9.5 Removing a Job from the Queue

The qdel command removes a PBS Pro batch job from the queue. As a user, you
can remove any batch job for which you are the owner. Jobs are removed from
the queue in the order they are presented to qdel. For more information, see the
qdel(1B) man page and the PBS Pro User Guide.

S–2396–20 71

Cray XT™ Series Programming Environment User’s Guide

72 S–2396–20

Debugging an Application [10]

This chapter describes some of the debugging options that are native to the
Cray XT series Programming Environment, as well as the optional TotalView
debugging software package from TotalView Technologies, LLC and the GNU
gdb debugger.

10.1 Troubleshooting Catamount Application Failures

The yod utility provides rudimentary diagnostics for a subset of compute node
operating system calls. The subset consists of the following system calls, which
perform remote procedure calls (RPCs) to yod:

Table 8. RPCs to yod

chmod fstatfs mkdir rmdir symlink

chown fsync open setegid sync

close ftruncate pread seteuid truncate

exit getdirentries pwrite setgid umask

fchmod link read setuid unlink

fchown lseek readlink stat utimes

fstat lstat rename statfs write

System calls that are performed solely by Catamount do not show up in the
diagnostic output.

There are two ways to enable this feature:

• Invoke yod with the -strace option.

• Set YOD_STRACE=1 in your shell environment.

Note: In this context the term strace is a misnomer. The yod utility does
not provide the UNIX-like strace() function. Enabling strace turns on
diagnostic output generated by the RPC library, which yod uses to service the
system calls listed previously. The I/O-related system calls are for non-parallel
file systems.

S–2396–20 73

Cray XT™ Series Programming Environment User’s Guide

The yod command also enables you to get trace reports about memory
allocation and deallocation. The -tracemalloc option provides rudimentary
diagnostics for malloc() and free() calls. This information can help you
pinpoint memory leaks and determine if using the GNU malloc library would be
beneficial. For further information about the GNU malloc library, see Appendix
B, page 187.

10.2 Using the TotalView Debugger

Cray XT series systems support the TotalView debugger. TotalView is an
optional product that provides source-level debugging of applications running
on multiple compute nodes. TotalView is compatible with the PGI, GCC, and
PathScale compilers.

TotalView:

• Provides both a graphical user interface and a command-line interface (with
command-line help).

• Supports the x86-64 Assembler.

• Supports programs written in mixed languages.

• Supports debugging of up to 4096 compute node processes.

• Supports watchpoints.

• Provides a memory debugger.

TotalView typically is run interactively. If your site has not designated any
compute nodes for interactive processing, use the PBS Pro qsub -I interactive
mode described in Chapter 9, page 67.

For further information about the TotalView graphical and command line
interfaces, see the totalview(1) man page. For further information about
TotalView, including details about running on a Cray XT series system, see
http://www.totalviewtech.com/Documentation.

10.2.1 Debugging an Application

To debug a CNL application, use this command format to launch an instance of
aprun, which in turn launches the application executable_name:

% totalview aprun -a [other_aprun_arguments] ./executable_name

74 S–2396–20

http://www.totalviewtech.com/Documentation

Debugging an Application [10]

Note: The -a option is a TotalView option indicating that the arguments that
follow apply to aprun. If you want to use the aprun -a arch option, you
need to include a second -a, as in:

% totalview aprun -a -a xt -n 2 ./a.out

For example, to debug application xt1, use:

% totalview aprun -a -n 2 ./xt1

The TotalView Root and Process windows appear.

Figure 1. TotalView Root Window

S–2396–20 75

Cray XT™ Series Programming Environment User’s Guide

Figure 2. TotalView Process Window

76 S–2396–20

Debugging an Application [10]

To debug a Catamount application, substitute yod for aprun in the totalview
command.

10.2.2 Debugging a Core File

To debug a core file, from the Process window File menu, select New Program.
A New Program window appears. Click the Open a core file icon. Under the
Program tab, specify the application name in the Program: field and the core file
name in the Core file: field. Click OK.

Figure 3. Debugging a Core File

S–2396–20 77

Cray XT™ Series Programming Environment User’s Guide

10.2.3 Attaching to a Running Process

To attach TotalView to a running process, you must be logged in to the same
login node that you used to launch the process, and you must attach to the
instance of aprun that was used to launch the process, rather than to the process
itself. To do so, follow these steps:

1. Launch TotalView:

% totalview

2. In the New Program window, click the Attach to an existing process icon.
The list of processes currently running displays.

Figure 4. Attaching to a Running Process

78 S–2396–20

Debugging an Application [10]

3. Select the instance of aprun you want, and click OK. TotalView displays a
Process Window showing both aprun and the program threads that were
launched using that instance of aprun.

10.2.4 Altering Standard I/O

To change the names of the files to which TotalView will write or from which
TotalView will read, Launch the program using TotalView. Do not specify the
stdin file at this time. Use:

% totalview aprun -a -n pes program_name

The TotalView Root and Process windows display. In the Process window under
the File menu, select New Program. The New Program window displays. Select
the Standard I/O tab. The Standard Input, Standard Output, and Standard Error
fields are displayed.

S–2396–20 79

Cray XT™ Series Programming Environment User’s Guide

Figure 5. Altering Standard I/O

Type the file name for Standard Input,Standard Output, or Standard Error field,
specify the desired file name, and click the OK button.

On the main TotalView window, click the Go button to begin program execution.

80 S–2396–20

Debugging an Application [10]

10.2.5 TotalView Limitations for Cray XT Series Systems

The TotalView debugging suite for the Cray XT series system differs in
functionality from the standard TotalView implementation in the following ways:

• The TotalView Visualizer is not included.

• Debugging multiple threads on compute nodes is not supported.

• Debugging MPI_Spawn(), OpenMP, or Cray SHMEM programs is not
supported.

• Compiled EVAL points and expressions are not supported.

• Type transformations for the PGI C++ compiler standard template library
collection classes are not supported.

• Exception handling for the PGI C++ compiler run time library is not
supported.

• Spawning a process onto the compute processors is not supported.

• Machine partitioning schemes, gang scheduling, or batch systems are not
supported.

In some cases, TotalView functionality is limited because CNL or Catamount
does not support the feature in the user program.

10.3 Using the GNU gdb Debugger

Cray XT series supports the GNU Project debugger, gdb, for single-process
debugging on Catamount compute nodes; gdb is not supported for CNL
compute nodes.

Use the cc, CC, ftn, or f77 -g debug option to generate debugging information.
This information describes the data type of each variable or function and the
correspondence between source line numbers and addresses in the executable
code.

For an example showing how to use xtgdb to set breakpoints in a single-process
job, see Example 38, page 154.

For details, see the xtgdb(1), cc(1), CC(1), f77(1), and ftn(1) man pages.

S–2396–20 81

Cray XT™ Series Programming Environment User’s Guide

82 S–2396–20

Performance Analysis [11]

This chapter describes the Cray XT series performance analysis tools.

11.1 Using the Performance API

The Performance API (PAPI) is a standard API for accessing microprocessor
registers that count events or occurrences of specific signals related to the
processor's function. By monitoring these events, you can determine the extent to
which your code efficiently maps to the underlying architecture.

PAPI provides two interfaces to the counter hardware:

• A high-level interface for basic measurements

• A fully programmable, low-level interface for users with more sophisticated
needs

PAPI supports multiplexing under CNL. Although it is also supported under
Catamount, the long time slice (~1 second) for each set of independent counters
makes it impractical to use except for very long running programs.

The pat_build utility does not allow you to instrument a program that is also
using the PAPI interface directly or indirectly (via libhwpc).

To use PAPI, you must load the PAPI module.

For CNL applications, use:

% module load papi-cnl

For Catamount applications, use:

% module load papi

For more information about PAPI, see http://icl.cs.utk.edu/papi/.

11.1.1 Using the High-level PAPI Interface

The high-level interface provides the ability to start, stop, and read specific
events, one at a time. For an example of a CNL application using the PAPI
high-level interface, see Example 17, page 114. For an example of a Catamount
application using the PAPI high-level interface, see Example 39, page 155.

S–2396–20 83

http://icl.cs.utk.edu/papi/

Cray XT™ Series Programming Environment User’s Guide

11.1.2 Using the Low-level PAPI Interface

The low-level PAPI interface deals with hardware events in groups called event
sets. An event set maps the hardware counters available on the system to a set
of predefined events, called presets. The event set reflects how the counters are
most frequently used, such as taking simultaneous measurements of different
hardware events and relating them to one another. For example, relating cycles to
memory references or flops to level-1 cache misses can reveal poor locality and
memory management.

Event sets are fully programmable and have features such as guaranteed thread
safety, writing of counter values, multiplexing, and notification on threshold
crossing, as well as processor-specific features. For the list of predefined event
sets, see the hwpc(3) man page.

For an example of a CNL application using the PAPI low-level interface, see
Example 18, page 115. For an example of a Catamount application using the PAPI
low-level interface, see Example 40, page 156.

For information about constructing an event set, see the PAPI User Guide and the
PAPI Programmer's Reference manual.

For a list of supported hardware counter presets from which to construct an event
set, see Appendix C, page 193.

11.2 Using the Cray Performance Analysis Tool

The Cray Performance Analysis Tool (CrayPat) helps you analyze the
performance of programs. To use it:

1. Load the craypat module:

% module load craypat

Note: You must load the craypat module before building even the
uninstrumented version of the application.

2. Compile and link your application.

Note: All executable programs previously created with the CrayPat 3.1
module must be relinked in order to be instrumented with CrayPat 3.2.
The pat_build utility in CrayPat 3.2 will not instrument executable files
linked with the CrayPat 3.1 module loaded.

84 S–2396–20

Performance Analysis [11]

3. Use the pat_build command to create an instrumented version of the
application, specifying the functions to be traced through options such as
-u and -g mpi.

4. Set any relevant environment variables, such as:

• setenv PAT_RT_HWPC 1, which specifies the first of the nine
predefined sets of hardware counter events.

• setenv PAT_RT_SUMMARY 0, which specifies a full-trace data file rather
than a summary. Such a file can be very large but is needed to view
behavior over time with Cray Apprentice2.

• setenv PAT_BUILD_ASYNC 1, which enables you to instrument a
program for a sampling experiment.

• setenv PAT_RT_EXPFILE_DIR dir, which enables you to specify a
directory into which the experiment data files will be written, instead of
the current working directory. If a single data file is written, its default
root name is the name of the instrumented program followed by the
plus sign (+), the process ID, and one or more key letters indicating the
type of the experiment (such as program1+pat+3820tdt). If there is
a data file from each process, they are written into a subdirectory with
that name. For a large number of processes, it may be necessary that
PAT_RT_EXPFILE_MAX be set to 0 or the number of processes and that
PAT_RT_EXPFILE_DIR be set to a directory in a Lustre file system (if the
instrumented program is not invoked in such a directory). The default for
a multi-PE program is to write a single data file.

5. Execute the instrumented program.

6. Use pat_report on the resulting data file to generate a report. The default
report is a sample by function, but alternative views can be specified through
options such as:

• -O calltree

• -O callers

• -O load_balance

The -s pe=... option overrides the way that per-PE data is shown in
default tables and in tables specified using the -O option. For details, see the
pat_report(1) man page.

S–2396–20 85

Cray XT™ Series Programming Environment User’s Guide

These steps are illustrated in the example CrayPat programs (see Chapter 13,
page 95 and Chapter 14, page 133). For more information, see the man pages
and the interactive pat_help utility.

Note: CrayPat does not support the PathScale -fb-create, -fb-phase, or
-pg compiler options.

For more information about using CrayPat, see the Using Cray Performance
Analysis Tools manual, the craypat(1) man page, and run the pat_help utility.
For more information about PAPI HWPC, see Appendix C, page 193, the hwpc(3)
man page, and the PAPI website at http://icl.cs.utk.edu/papi/.

11.2.1 Tracing and Sampling Experiments

CrayPat supports two types of experiments: tracing and sampling.

Tracing counts an event, such as the number of times an MPI call is executed.
When tracing experiments are done, selected function entry points are traced
and produce a data record in the run time experiment data file, if the function is
executed. The following categories of function entry points can be traced:

• System calls

• I/O (formatted and buffered or system calls)

• Math (see math.h)

• MPI

• SHMEM

• Dynamic heap memory

• BLAS

• LAPACK

• Pthreads (not supported on Catamount)

Note: Only true function calls can be traced. Function calls that are inlined by
the compiler cannot be traced.

Sampling experiments capture values from the call stack or the program
counter at specified intervals or when a specified counter overflows. (Sampling
experiments are also referred to as asynchronous experiments).

86 S–2396–20

http://icl.cs.utk.edu/papi/

Performance Analysis [11]

Supported sampling functions are:

• samp_pc_prof, which provides the total user time and system time
consumed by a program and its functions (not supported on Catamount).

• samp_pc_time, which samples the program counter at a given time interval.
This returns the total program time and the absolute and relative times each
program counter was recorded.

• samp_pc_ovfl, which samples the program counter at a given overflow
of a hardware performance counter.

• samp_cs_time, which samples the call stack at a given time interval and
returns the total program time and the absolute and relative times each call
stack counter was recorded (otherwise identical to the samp_pc_time
experiment).

• samp_cs_ovfl, which samples the call stack at a given overflow of a
hardware performance counter (otherwise identical to the samp_pc_ovfl
experiment).

• samp_ru_time, which samples system resources at a given time interval
(otherwise identical to the samp_pc_time experiment).

• samp_ru_ovfl, which samples system resources at a given overflow of a
hardware performance counter (otherwise identical to the samp_pc_ovfl
experiment.)

• samp_heap_time, which samples dynamic heap memory management
statistics at a given time interval (otherwise identical to the samp_pc_time
experiment).

• samp_heap_ovfl, which samples dynamic heap memory management
statistics at a given overflow of a hardware performance counter (otherwise
identical to the samp_pc_ovfl experiment).

Note: Hardware counter information cannot be collected during any type of
sampling on a Catamount system and cannot be collected during sampling
by overflow on a CNL system. Recommended practice is to use sampling to
obtain a profile and then trace the functions of interest to obtain hardware
counter information for them.

S–2396–20 87

Cray XT™ Series Programming Environment User’s Guide

11.3 Using Cray Apprentice2

Cray Apprentice2 is a performance data visualization tool. You can run
Cray Apprentice2 on a Cray XT series system or Cray Apprentice2 Desktop on
a standalone Linux machine. After you have used pat_build to instrument
a program for a performance analysis experiment, executed the instrumented
program, and used pat_report to convert the resulting data file to a
Cray Apprentice2 data format, you can use Cray Apprentice2 to explore the
experiment data file and generate a variety of interactive graphical reports.

To run Cray Apprentice2, load the Cray Apprentice2 module, run pat_report,
then use the app2 command to launch Cray Apprentice2:

% module load apprentice2

% app2 [--limit tag_count | --limit_per_pe tag_count] [data_files]

Use the pat_report -f ap2 option to specify the data file type.

To create a graphical representation of a CrayPat report, use an experiment file to
generate a report in XML format.

For example, using experiment file program1+pat+2511td, generate a report
in XML format (note the inclusion of the -f ap2 option):

% module load apprentice2

% pat_report -f ap2 program1+pat+2511td

Output redirected to: program1+pat+2511td.ap2

Run Cray Apprentice2:

% app2 program1+pat+2511td.ap2

88 S–2396–20

Performance Analysis [11]

Cray Apprentice2 displays pat_report data in graphical form. This example
shows the Function display option:

Figure 6. Cray Apprentice2 Function Display

For more information about using Cray Apprentice2, see the Cray Apprentice2
online help system and the app2(1) and pat_report(1) man pages.

S–2396–20 89

Cray XT™ Series Programming Environment User’s Guide

90 S–2396–20

Optimization [12]

12.1 Using Compiler Optimization Options

After you have compiled and debugged your code and analyzed its performance,
you can use a number of techniques to optimize performance. For details
about compiler optimization and optimization reporting options, see the PGI
User's Guide, the Using the GNU Compiler Collection (GCC) manual, or the QLogic
PathScale Compiler Suite User Guide.

Optimization can produce code that is more efficient and runs significantly
faster than code that is not optimized. Optimization can be performed at the
compilation unit level through compiler driver options or to selected portions
of code through the use of directives or pragmas. Optimization may increase
compilation time and may make debugging difficult. It is best to use performance
analysis data to isolate the portions of code where optimization would provide
the greatest benefits.

In the following example, a Fortran matrix multiply subroutine is optimized. The
compiler driver option generates an optimization report.

Source code of matrix_multiply.f90:

subroutine mxm(x,y,z,m,n)

real*8 x(m,n), y(m,n), z(n,n)

do k = 1,n

do j = 1,n

do i = 1,m

x(i,j) = x(i,j) + y(i,k)*z(k,j)

enddo

enddo

enddo

end

PGI Fortran compiler command:

% ftn -c -fast -Mvectsse -Minfo matrix_multiply.f90

S–2396–20 91

Cray XT™ Series Programming Environment User’s Guide

Optimization report:

mxm:

4, Interchange produces reordered loop nest: 5, 4, 6

6, Generated 3 alternate loops for the inner loop

Generated vector sse code for inner loop

Generated 2 prefetch instructions for this loop

Generated vector sse code for inner loop

Generated 2 prefetch instructions for this loop

Generated vector sse code for inner loop

Generated 2 prefetch instructions for this loop

Generated vector sse code for inner loop

Generated 2 prefetch instructions for this loop

12.2 Optimizing Applications Running on Dual-core Processors

Because dual-core systems can run more tasks simultaneously, overall system
performance can increase. The trade-offs are that each core has less local memory
(because it is shared by the two cores) and less system interconnection bandwidth
(which is also shared).

12.2.1 MPI and SHMEM Applications Running under Catamount

By default, processes are placed in rank-sequential order, first on the master core
(core 0) on each node and then on the subordinate core (core 1) on each node. So,
for a 100-core, 50-node job, the layout of ranks on cores is:

Node 1 Node 2 Node 3 … Node 50

Core 0 1 0 1 0 1 … 0 1

Rank 0 50 1 51 2 52 … 49 99

Latency times for data transfers between parallel processes can vary
according to the type of process-to-core placement: master-to-master,
subordinate-to-subordinate, master-to-subordinate on different nodes, and
master-to-subordinate on the same node. Master-to master transfers have the
shortest latency; subordinate-to-subordinate transfers have the longest latency.

MPI and SHMEM are not aware of the processor placement topology. As a result,
some applications may experience performance degradation.

92 S–2396–20

Optimization [12]

To attain the fastest possible run time, try running your program on the master
core of each allocated node. The subordinate cores are allocated to your job but
idle.

For example, the command:

% yod -sz 64 prog1

launches prog1 on the master core of each of 64 nodes.

The MPICH_RANK_REORDER_METHOD environment variable allows you to
override the default rank ordering scheme and use an SMP-style placement, a
folded-rank placement, or a custom rank placement. See the intro_mpi(3) man
page for details.

12.2.2 MPI and SHMEM Applications Running under CNL

Processes are placed in packed rank-sequential order, starting with the first node.
So, for a 100-core, 50-node job, the layout of ranks on cores is:

Node 1 Node 2 Node 3 … Node 50

Core 0 1 0 1 0 1 … 0 1

Rank 0 1 2 3 4 5 … 98 99

Note: You can use the yod placement method (rank-sequential order) instead
by setting MPICH_RANK_REORDER_METHOD to 0.

To attain the fastest possible run time, try running your program on only one core
of each node. (In this case, the other cores are allocated to your job but idle.) This
allows each process to have full access to the system interconnection network.

For example, the command:

% aprun -n 64 -N 1 ./prog1

launches prog1 on one core of each of 64 dual-core nodes.

S–2396–20 93

Cray XT™ Series Programming Environment User’s Guide

94 S–2396–20

Example CNL Applications [13]

This chapter gives examples showing how to compile, link, and run CNL
applications.

Verify that your work area is in a Lustre-mounted directory. Then use the
module list command to verify that the correct modules are loaded.
Whenever you compile and link applications to be run under CNL, you need to
have the -cnl module loaded. Each following example lists the modules that
have to be loaded.

Example 3: Basics of running a CNL application

This example shows how to use the PGI C compiler to compile an MPI program
and aprun to launch the executable.

Modules required:

PrgEnv-pgi

xtpe-target-cnl

Create a C program, simple.c:

#include "mpi.h"

int main(int argc, char *argv[])

{

int rank;

int numprocs;

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

printf("hello from pe %d of %d\n",rank,numprocs);

MPI_Finalize();

}

Compile the program:

% cc -o simple simple.c

Run the program on six processing elements.

% aprun -n 6 ./simple

S–2396–20 95

Cray XT™ Series Programming Environment User’s Guide

The output to stdout will be similar to this:

hello from pe 0 of 6

hello from pe 1 of 6

hello from pe 2 of 6

hello from pe 4 of 6

hello from pe 5 of 6

hello from pe 3 of 6

Application 106504 resources: utime 0, stime 0

Example 4: Basics of running an MPI application

This example shows how to compile, link, and run an MPI program. The MPI
program distributes the work represented in a reduction loop, prints the subtotal
for each PE, combines the results from the PEs, and prints the total.

Modules required:

PrgEnv-pgi

xtpe-target-cnl

Create a Fortran program, reduce.f90:

program reduce

include "mpif.h"

integer n, nres, ierr

call MPI_INIT (ierr)

call MPI_COMM_RANK (MPI_COMM_WORLD,mype,ierr)

call MPI_COMM_SIZE (MPI_COMM_WORLD,npes,ierr)

nres = 0

n = 0

do i=mype,100,npes

n = n + i

enddo

print *, 'My PE:', mype, ' My part:',n

call MPI_REDUCE (n,nres,1,MPI_INTEGER,MPI_SUM,0,MPI_COMM_WORLD,ierr)

if (mype == 0) print *,' PE:',mype,'Total is:',nres

96 S–2396–20

Example CNL Applications [13]

call MPI_FINALIZE (ierr)

end

Compile reduce.f90:

% ftn -o reduce reduce.f90

Run the program on two PEs.

% aprun -n 2 ./reduce

My PE: 0 My part: 2550

My PE: 1 My part: 2500

PE: 0 Total is: 5050

Application 65539 resources: utime 0, stime 0

If desired, you could use this C version of the program:

/* program reduce */

#include <stdio.h>

#include "mpi.h"

int main (int argc, char *argv[])

{

int i, sum, mype, npes, nres, ret;

ret = MPI_Init (&argc, &argv);

ret = MPI_Comm_size (MPI_COMM_WORLD, &npes);

ret = MPI_Comm_rank (MPI_COMM_WORLD, &mype);

nres = 0;

sum = 0;

for (i = mype; i <=100; i += npes) {

sum = sum + i;

}

(void) printf ("My PE:%d My part:%d\n",mype, sum);

ret = MPI_Reduce (&sum,&nres,1,MPI_INTEGER,MPI_SUM,0,MPI_COMM_WORLD);

if (mype == 0)

{

(void) printf ("PE:%d Total is:%d\n",mype, nres);

}

ret = MPI_Finalize ();

}

S–2396–20 97

Cray XT™ Series Programming Environment User’s Guide

Example 5: Running an MPI work distribution program

This example uses MPI solely to identify the processor associated with each
process and select the work to be done by each processor. Each processor writes
its output directly to stdout.

Module required:

xtpe-target-cnl

Source code of Fortran main program (prog.f90):

program main

include 'mpif.h'

call MPI_Init(ierr) ! Required

call MPI_Comm_rank(MPI_COMM_WORLD,mype,ierr)

call MPI_Comm_size(MPI_COMM_WORLD,npes,ierr)

print *,'hello from pe',mype,' of',npes

do i=1+mype,1000,npes ! Distribute the work

call work(i,mype)

enddo

call MPI_Finalize(ierr) ! Required

end

The C function work.c processes a single item of work.

Source code of work.c:

#include <stdio.h>

void work_(int *N, int *MYPE)

{

int n=*N, mype=*MYPE;

if (n == 42) {

printf("PE %d: sizeof(long) = %d\n",mype,sizeof(long));

printf("PE %d: The answer is: %d\n",mype,n);

}

}

Compile work.c:

% cc -c work.c

98 S–2396–20

Example CNL Applications [13]

Compile prog.f90, load work.o, and create executable program1:

% ftn -o program1 prog.f90 work.o

Run program1 on two PEs:

% aprun -n 2 ./program1

Output from program1:

hello from pe 1 of 2

PE 1: sizeof(long) = 8

PE 1: The answer is: 42

hello from pe 0 of 2

Application 106505 resources: utime 0, stime 0

If you want to use a C main program instead of the Fortran main program,
compile prog.c:

#include <stdio.h>

#include <mpi.h> /* Required */

main(int argc, char **argv)

{

int i,mype,npes;

MPI_Init(&argc,&argv); /* Required */

MPI_Comm_rank(MPI_COMM_WORLD,&mype);

MPI_Comm_size(MPI_COMM_WORLD,&npes);

printf("hello from pe %d of %d\n",mype,npes);

for (i=1+mype; i<=1000; i+=npes) { /* distribute the work */

work_(&i, &mype);

}

MPI_Finalize(); /* Required */

}

S–2396–20 99

Cray XT™ Series Programming Environment User’s Guide

Example 6: Combining results from all processors using MPI

In this example, MPI combines the results from each processor. PE 0 writes the
output to stdout.

Module required:

xtpe-target-cnl

Source code of Fortran main program (prog1.f90):

program main

include 'mpif.h'

integer work1

call MPI_Init(ierr)

call MPI_Comm_rank(MPI_COMM_WORLD,mype,ierr)

call MPI_Comm_size(MPI_COMM_WORLD,npes,ierr)

n=0

do i=1+mype,1000,npes

n = n + work1(i,mype)

enddo

call MPI_Reduce(n,nres,1,MPI_INTEGER,MPI_SUM,0,MPI_COMM_WORLD,ier)

if (mype.eq.0) print *,'PE',mype,': The answer is:',nres

call MPI_Finalize(ierr)

end

Source code of work1.c:

int work1_(int *N, int *MYPE)

{

int n=*N, mype=*MYPE;

int mysum=0;

switch(n) {

case 12: mysum+=n;

case 68: mysum+=n;

case 94: mysum+=n;

case 120: mysum+=n;

case 19: mysum-=n;

case 103: mysum-=n;

100 S–2396–20

Example CNL Applications [13]

case 53: mysum-=n;

case 77: mysum-=n;

}

return mysum;

}

Compile work1.c and prog1.f90:

% cc -c work1.c

% ftn -o program2 prog1.f90 work1.o

To run program2 on 3 PEs, use:

% aprun -n 3 ./program2

PE 0 : The answer is: -1184

Application 106506 resources: utime 0, stime 0

If you want to use a C main program instead of the Fortran main program,
compile prog1.c:

#include <stdio.h>

#include <mpi.h>

main(int argc, char **argv)

{

int i,mype,npes,n=0,res;

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD,&mype);

MPI_Comm_size(MPI_COMM_WORLD,&npes);

for (i=mype; i<1000; i+=npes) {

n += work1_(&i, &mype);

}

MPI_Reduce(&n,&res,1,MPI_INT,MPI_SUM,0,MPI_COMM_WORLD);

if (!mype) {

printf("PE %d: The answer is: %d\n",mype,res);

}

MPI_Finalize();

}

and link it with work1.o:

% cc -o program3 prog1.c work1.o

S–2396–20 101

Cray XT™ Series Programming Environment User’s Guide

Example 7: Using the Cray shmem_put function

This example shows how to use the shmem_put64() function to copy a
contiguous data object from the local PE to a contiguous data object on a different
PE.

Module required:

xtpe-target-cnl

Source code of C program (shmem1.c):

/*

* simple put test

*/

#include <stdio.h>

#include <stdlib.h>

#include <mpp/shmem.h>

/* Dimension of source and target of put operations */

#define DIM 1000000

long target[DIM];

long local[DIM];

main(int argc,char **argv)

{

register int i;

int my_partner, my_pe;

/* Prepare resources required for correct functionality

of SHMEM on XT3. Alternatively, shmem_init() could

be called. */

start_pes(0);

for (i=0; i<DIM; i++) {

target[i] = 0L;

local[i] = shmem_my_pe() + (i * 10);

}

my_pe = shmem_my_pe();

if(shmem_n_pes()%2) {

if(my_pe == 0) printf("Test needs even number of processes\n");

102 S–2396–20

Example CNL Applications [13]

/* Clean up resources before exit. */

shmem_finalize();

exit(0);

}

shmem_barrier_all();

/* Test has to be run on two procs. */

my_partner = my_pe % 2 ? my_pe - 1 : my_pe + 1;

shmem_put64(target,local,DIM,my_partner);

/* Synchronize before verifying results. */

shmem_barrier_all();

/* Check results of put */

for(i=0; i<DIM; i++) {

if(target[i] != (my_partner + (i * 10))) {

fprintf(stderr,"FAIL (1) on PE %d target[%d] = %d (%d)\n",

shmem_my_pe(), i, target[i],my_partner+(i*10));

shmem_finalize();

exit(-1);

}

}

printf(" PE %d: Test passed.\n",my_pe);

/* Clean up resources. */

shmem_finalize();

}

Compile shmem1.c and create executable shmem1:

% cc -o shmem1 shmem1.c

Run shmem1:

% aprun -n 4 ./shmem1

PE 0: Test passed.

PE 2: Test passed.

PE 3: Test passed.

PE 1: Test passed.

Application 106507 resources: utime 0, stime 0

S–2396–20 103

Cray XT™ Series Programming Environment User’s Guide

Example 8: Using the Cray shmem_get function

This example shows how to use the shmem_get() function to copy a contiguous
data object from a different PE to a contiguous data object on the local PE.

Module required:

xtpe-target-cnl

Note: The Fortran module for Cray SHMEM is not supported. Use the
INCLUDE 'mpp/shmem.fh' statement instead.

Source code of Fortran program (shmem2.f90):

program reduction

include 'mpp/shmem.fh'

real values, sum

common /c/ values

real work

call start_pes(0)

values=my_pe()

call shmem_barrier_all! Synchronize all PEs

sum = 0.0

do i = 0,num_pes()-1

call shmem_get(work, values, 1, i) ! Get next value

sum = sum + work ! Sum it

enddo

print*, 'PE',my_pe(),' computedsum=',sum

call shmem_barrier_all

call shmem_finalize

end

Compile shmem2.f90 and create executable shmem2:

% ftn -o shmem2 shmem2.f90

104 S–2396–20

Example CNL Applications [13]

Run shmem2:

% aprun -n 2 ./shmem2

PE 0 computedsum= 1.000000

PE 1 computedsum= 1.000000

Application 106508 resources: utime 0, stime 0

Example 9: Turning off the PGI FORTRAN STOP message

This example shows how to use the NO_STOP_MESSAGE environment variable to
turn of the PGI FORTRAN STOP message.

Modules required:

xtpe-target-cnl

PrgEnv-pgi

Source code of program test_stop.f90:

program test_stop

read *, i

if (i == 1) then

stop "I was 1"

else

stop

end if

end

Compile program test_stop.f90 and create executable test_stop:

% ftn -o test_stop test_stop.f90

Run test_stop:

% aprun -n 2 ./test_stop

1

0

Execution results:

I was 1

FORTRAN STOP

Application 40962 exit codes: 127

Application 40962 resources: utime 0, stime 0

S–2396–20 105

Cray XT™ Series Programming Environment User’s Guide

Turn off the FORTRAN STOP messages:

% setenv NO_STOP_MESSAGE

Run test_stop again:

% aprun -n 2 ./test_stop

1

0

Execution results:

I was 1

Application 40966 exit codes: 127

Application 40966 resources: utime 0, stime 0

Example 10: Running an MPI/OpenMP program

This example shows how to compile and run an OpenMP application using
PathScale.

Modules required:

PrgEnv-pathscale

xtpe-target-cnl

Set the OMP_NUM_THREADS environment variable to the number of threads in
the team.

Source code of C program omp1.c:

#include <mpi.h>

#include <omp.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

int rank, nid, thread;

MPI_Init(&argc, argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

PMI_CNOS_Get_nid(rank, &nid);

#pragma omp parallel private(thread)

{

thread = omp_get_thread_num();

#pragma omp barrier

printf("Hello from rank %d (thread %d) on nid%05d",

106 S–2396–20

Example CNL Applications [13]

rank, thread, nid);

if (thread == 0)

printf(" <-- master\n");

else

printf(" <-- subordinate\n");

}

MPI_Finalize();

return(0);

}

Compile and link omp1.c:

% cc -mp -o omp1 omp1.c

Set the OpenMP environment variable:

% setenv OMP_NUM_THREADS 2

Run program omp:

% aprun -n 2 -d 2 ./omp1

Hello from rank 0 (thread 0) on nid00540 <-- master

Hello from rank 1 (thread 0) on nid00541 <-- master

Hello from rank 0 (thread 1) on nid00540 <-- subordinate

Hello from rank 1 (thread 1) on nid00541 <-- subordinate

Application 14112 resources: utime 0, stime 0

The aprun command created two instances of omp1; each instance of omp1
spawned an additional thread.

Example 11: Using a PBS Pro job script

In this example, a PBS Pro job script requests four processors to run an
application.

Modules required:

xtpe-target-cnl

pbs

Do not load the xt-pbs module. Unload it if it has been loaded.

Create script1:

#!/bin/bash

#

Define the destination of this job

as the queue named "workq":

S–2396–20 107

Cray XT™ Series Programming Environment User’s Guide

#PBS -q workq

#PBS -l mppwidth=4

Tell PBS Pro to keep both standard output and

standard error on the execution host:

#PBS -k eo

cd /lus/nid0007/user1

aprun -n 4 ./program1

exit 0

Set permissions to executable:

% chmod +x script1

Submit the job:

% qsub script1

The qsub command produces a batch job log file with output from program1 (see
Example 5, page 98). The job log file has the form script1.onnnnn.

% cat script1.o19850

hello from pe 0 of 4

hello from pe 1 of 4

PE 1: sizeof(long) = 8

PE 1: The answer is: 42

hello from pe 3 of 4

hello from pe 2 of 4

Application 106510 resources: utime 0, stime 0

Example 12: Running an MPI program under PBS Pro

This example shows a batch script that runs the program simple.c (see
Example 3, page 95).

Modules required:

xtpe-target-cnl

pbs

Do not load the xt-pbs module. Unload it if it has been loaded.

108 S–2396–20

Example CNL Applications [13]

Create script2:

% cat script2

#PBS -l mppwidth=6

#PBS -joe

cd /lus/nid00011/user1

aprun -n 6 ./simple

Set permissions to executable:

% chmod +x script2

Submit the script to the PBS Pro batch system:

% qsub script2

Display the job results:

% cat script2.o19852

hello from pe 0 of 6

hello from pe 2 of 6

hello from pe 3 of 6

hello from pe 1 of 6

hello from pe 4 of 6

hello from pe 5 of 6

Application 106513 resources: utime 0, stime 0

Example 13: Running an MPI_REDUCE program under PBS Pro

This example shows a batch script that runs the program reduce.f90 (see
Example 4, page 96).

Modules required:

xtpe-target-cnl

pbs

Do not load the xt-pbs module. Unload it if it has been loaded.

Create a batch script, run_reduce, verifying that the executable is in a directory
in the Lustre file system:

#!/bin/sh

#PBS -l mppwidth=2

#PBS -joe

#PBS -l walltime=00:30:00

cd $HOME/pe_user/

echo "Running the Example reduce "

S–2396–20 109

Cray XT™ Series Programming Environment User’s Guide

echo ""

date

echo ""

cd /lus/nid00011/user1

aprun -n 2 ./reduce

Set permissions to executable:

% chmod +x run_reduce

Submit the script to the PBS Pro batch system:

% qsub run_reduce

Display the job results:

% cat run_reduce.o70977

Running the Example reduce

Wed May 9 13:36:52 CDT 2007

My PE: 1 My part: 2500

My PE: 0 My part: 2550

PE: 0 Total is: 5050

Application 65545 resources: utime 0, stime 0

Example 14: Using a script to create and run a batch job

This example script takes two arguments, the name of a program (shmem2, see
Example 8, page 104) and the number of processors on which to run the program.
The script performs the following actions:

1. Creates a temporary file that contains a PBS Pro batch job script

2. Submits the file to PBS Pro

3. Deletes the temporary file

Modules required:

xtpe-target-cnl

pbs

Do not load the xt-pbs module. Unload it if it has been loaded.

Create run123:

#!/bin/csh

110 S–2396–20

Example CNL Applications [13]

if ("$1" == "") then

echo "Usage: run [executable|script] [ncpus]"

exit

endif

set n=1 # set default number of CPUs

if ("$2" != "") set n=$2

cat > job.$$ <<EOT #creates the batch jobscript

#!/bin/csh

#PBS -N $1

#PBS -l mppwidth=$n

#PBS -joe

cd ${PWD}

aprun -n $n -t30 ./$1

EOT

qsub job.$$ # submit batch job

rm job.$$

Set file permissions to executable:

% chmod +x run123

Run the job script:

% ./run123 shmem2 2

List the job output:

% cat shmem2.o73595

PE 0 computedsum= 1.000000

PE 1 computedsum= 1.000000

Application 35612 resources: utime 0, stime 0

Example 15: Running multiple sequential applications

To run multiple sequential applications, the number of processors you specify as
an argument to qsub must be equal to or greater than the largest number of
processors required by a single invocation of aprun in your script. For example,
in job script mult_seq_cnl, the -l mppwidth value is 4 because the largest
aprun n value is 4.

Modules required:

xtpe-target-cnl

pbs

Do not load the xt-pbs module. Unload it if it has been loaded.

S–2396–20 111

Cray XT™ Series Programming Environment User’s Guide

Create mult_seq_cnl:

#!/bin/bash

#

Define the destination of this job

as the queue named "workq":

#PBS -q workq

#PBS -l mppwidth=4

Tell PBS Pro to keep both standard output and

standard error on the execution host:

#PBS -k eo

cd /lus/nid00011/user1

aprun -n 2 ./program1

aprun -n 3 ./program2

aprun -n 4 ./shmem1

aprun -n 2 ./shmem2

exit 0

The script launches applications program1 (see Example 5, page 98), program2
(see Example 6, page 100), shmem1 (see Example 7, page 102), and shmem2 (see
Example 8, page 104).

Set file permission to executable:

% chmod +x mult_seq_cnl

Run the script:

% qsub mult_seq_cnl

List the output:

% cat mult_seq_cnl.o19884

hello from pe 1 of 2

hello from pe 0 of 2

PE 1: sizeof(long) = 8

PE 1: The answer is: 42

Application 106691 resources: utime 0, stime 0

PE 0 : The answer is: -1184

Application 106692 resources: utime 0, stime 0

PE 0: Test passed.

PE 3: Test passed.

PE 2: Test passed.

PE 1: Test passed.

Application 106693 resources: utime 0, stime 0

PE 0 computedsum= 1.000000

112 S–2396–20

Example CNL Applications [13]

PE 1 computedsum= 1.000000

Application 106694 resources: utime 0, stime 0

Example 16: Running multiple parallel applications

If you are running multiple parallel applications, the number of processors must
be equal to or greater than the total number of processors specified by calls to
aprun. For example, in job script mult_par_cnl, the -l mppwidth value is 11
because the total of the aprun n values is 11.

Modules required:

xtpe-target-cnl

pbs

Do not load the xt-pbs module. Unload it if it has been loaded.

Create mult_par_cnl:

#!/bin/bash

#

Define the destination of this job

as the queue named "workq":

#PBS -q workq

#PBS -l mppwidth=11

Tell PBS Pro to keep both standard output and

standard error on the execution host:

#PBS -k eo

cd /lus/nid00011/user1

aprun -n 2 ./program1 &

aprun -n 3 ./program2 &

aprun -n 4 ./shmem1 &

aprun -n 2 ./shmem2 &

exit 0

The script launches applications program1 (see Example 5, page 98), program2
(see Example 6, page 100), shmem1 (see Example 7, page 102), and shmem2 (see
Example 8, page 104).

Set file permission to executable:

% chmod +x mult_par_cnl

Run the script:

% qsub mult_par_cnl

S–2396–20 113

Cray XT™ Series Programming Environment User’s Guide

List the output:

% cat mult_par_cnl.o7231

hello from pe 0 of 2

hello from pe 1 of 2

PE 1: sizeof(long) = 8

PE 1: The answer is: 42

Application 155001 resources: utime 0, stime 0

PE 0 : The answer is: -1184

Application 155002 resources: utime 0, stime 0

PE 0: Test passed.

PE 3: Test passed.

PE 2: Test passed.

PE 1: Test passed.

Application 155003 resources: utime 0, stime 0

PE 0 computedsum= 1.000000

PE 1 computedsum= 1.000000

Application 155004 resources: utime 0, stime 0

Example 17: Using the high-level PAPI interface

PAPI provides simple high-level interfaces for instrumenting applications written
in C or Fortran. This example shows the use of the PAPI_start_counters()
and PAPI_stop_counters() functions.

Modules required:

xtpe-target-cnl

papi-cnl

Source of papi_hl.c:

#include <papi.h>

void main()

{

int retval, Events[2]= {PAPI_TOT_CYC, PAPI_TOT_INS};

long_long values[2];

if (PAPI_start_counters (Events, 2) != PAPI_OK) {

printf("Error starting counters\n");

exit(1);

}

/* Do some computation here... */

114 S–2396–20

Example CNL Applications [13]

if (PAPI_stop_counters (values, 2) != PAPI_OK) {

printf("Error stopping counters\n");

exit(1);

}

printf("PAPI_TOT_CYC = %lld\n", values[0]);

printf("PAPI_TOT_INS = %lld\n", values[1]);

}

Compile papi_hl.c:

% cc -o papi_hl papi_hl.c

Run papi_hl:

% aprun ./papi_hl

PAPI_TOT_CYC = 3350

PAPI_TOT_INS = 215

Application 155005 exit codes: 19

Application 155005 resources: utime 0, stime 0

Example 18: Using the low-level PAPI interface

PAPI provides an advanced low-level interface for instrumenting applications.
The PAPI library must be initialized before calling any of these functions;
initialization can be done by issuing either a high-level function call or
a call to PAPI_library_init(). This example shows the use of the
PAPI_create_eventset(), PAPI_add_event(), PAPI_start(), and
PAPI_read() functions.

Modules required:

xtpe-target-cnl

papi-cnl

Source of papi_ll.c:

#include <papi.h>

void main()

{

int EventSet = PAPI_NULL;

long_long values[1];

/* Initialize PAPI library */

if (PAPI_library_init(PAPI_VER_CURRENT) != PAPI_VER_CURRENT) {

S–2396–20 115

Cray XT™ Series Programming Environment User’s Guide

printf("Error initializing PAPI library\n");

exit(1);

}

/* Create Event Set */

if (PAPI_create_eventset(&EventSet) != PAPI_OK) {

printf("Error creating eventset\n");

exit(1);

}

/* Add Total Instructions Executed to eventset */

if (PAPI_add_event (EventSet, PAPI_TOT_INS) != PAPI_OK) {

printf("Error adding event\n");

exit(1);

}

/* Start counting ... */

if (PAPI_start (EventSet) != PAPI_OK) {

printf("Error starting counts\n");

exit(1);

}

/* Do some computation here...*/

if (PAPI_read (EventSet, values) != PAPI_OK) {

printf("Error stopping counts\n");

exit(1);

}

printf("PAPI_TOT_INS = %lld\n", values[0]);

}

Compile papi_ll.c:

% cc -o papi_ll papi_ll.c

Run papi_ll:

% aprun ./papi_ll

PAPI_TOT_INS = 103

Application 155006 exit codes: 19

Application 155006 resources: utime 0, stime 0

116 S–2396–20

Example CNL Applications [13]

Example 19: Using basic CrayPat functions

This example shows how to instrument a program, run the instrumented
program, and generate CrayPat reports.

Modules required:

xtpe-target-cnl

craypat

Compile the sample program prog.f90 and the routine it calls, work.c.

Source code of prog.f90:

program main

include 'mpif.h'

call MPI_Init(ierr) ! Required

call MPI_Comm_rank(MPI_COMM_WORLD,mype,ierr)

call MPI_Comm_size(MPI_COMM_WORLD,npes,ierr)

print *,'hello from pe',mype,' of',npes

do i=1+mype,1000,npes ! Distribute the work

call work(i,mype)

enddo

call MPI_Finalize(ierr) ! Required

end

Source code of work.c:

void work_(int *N, int *MYPE)

{

int n=*N, mype=*MYPE;

if (n == 42) {

printf("PE %d: sizeof(long) = %d\n",mype,sizeof(long));

printf("PE %d: The answer is: %d\n",mype,n);

}

}

Compile prog.f90 and work.c and create executable program1:

% cc -c work.c

% ftn -o program1 prog.f90 work.o

S–2396–20 117

Cray XT™ Series Programming Environment User’s Guide

Run pat_build to generate instrumented program program1+pat:

% pat_build -u -g mpi program1 program1+pat

INFO: A trace intercept routine was created for the function 'work_'.

INFO: a total of 39 function entry points were traced

The tracegroup (-g option) is mpi.

Run program1+pat:

% aprun -n 4 ./program1+pat

hello from pe 1 of 4

hello from pe 3 of 4

hello from pe 2 of 4

hello from pe 0 of 4

PE 1: sizeof(long) = 8

PE 1: The answer is: 42

Experiment data directory written:

/ufs/home/users/user1/pat/program1+pat+3820tdt

Note: When executed, the instrumented executable creates directory
progname+pat+PIDkeyletters, where . PID is the process ID that was assigned
to the instrumented program at run time.

Run pat_report to generate reports program1.rpt1 (using default
pat_report options) and program1.rpt2 (using the -O calltree option).

% pat_report program1+pat+3820tdt > program1.rpt1

Data file 4/4: [....................]

% pat_report -O calltree program1+pat+3820tdt > program1.rpt2

Data file 4/4: [....................]

List program1.rpt1:

% more program1.rpt1

CrayPat/X: Version 3.2 Revision 799 (xf 784) 04/23/07 07:49:22

Experiment: trace

Experiment data file:

/lus/nid00011/user1/cnl/program1+pat+3820tdt/*.xf (RTS)

Original program: /lus/nid00011/user1/cnl/program1

Instrumented with: pat_build -u -g mpi program1 program1+pat

118 S–2396–20

Example CNL Applications [13]

Instrumented program: /lus/nid00011/user1/cnl/./program1+pat

Program invocation: ./program1+pat

Number of PEs: 4

Exit Status: 0 PEs: 0-3

Runtime environment variables:

MPICHBASEDIR=/opt/xt-mpt/2.0.05/mpich2-64

MPICH_DIR=/opt/xt-mpt/2.0.05/mpich2-64/P2

MPICH_DIR_FTN_DEFAULT64=/opt/xt-mpt/2.0.05/mpich2-64/P2W

PAT_BUILD_ASYNC=0

PAT_ROOT=/opt/xt-tools/craypat/3.2.1/cpatx

PAT_RT_EXPFILE_PER_PROCESS=1

PAT_RT_HWPC=1

Report time environment variables:

PAT_ROOT=/opt/xt-tools/craypat/3.2.1/cpatx

Report command line options: <none>

System type and speed: x86_64 2400 MHz

Operating system:

Linux 2.6.16.27-0.9-cnl #1 SMP Tue May 8 18:24:11 PDT 2007

Hardware performance counter events:

PAPI_TLB_DM Data translation lookaside buffer misses

PAPI_L1_DCA Level 1 data cache accesses

PAPI_FP_OPS Floating point operations

DATA_CACHE_MISSES Data Cache Misses

User_Cycles Virtual Cycles

Estimated minimum overhead per call of a traced function,

which was subtracted from the data shown in this report

(for raw data, use the option: -s overhead=include):

PAPI_TLB_DM 0.000 misses

PAPI_L1_DCA 1282.080 ops

PAPI_FP_OPS 3.000 ops

DATA_CACHE_MISSES 8.312 misses

User_Cycles 4302.000 cycles

Time 1.799 microseconds

S–2396–20 119

Cray XT™ Series Programming Environment User’s Guide

Number of traced functions: 42

Notes for table 1:

Table option:

-O profile

Options implied by table option:

-d ti%@0.05,ti,imb_ti,imb_ti%,tr,P \

-b ex,gr,fu,pe=HIDE,th=HIDE

Options for related tables not shown by default:

-O callers

-O callers+src

-O calltree

-O calltree+src

This table shows only lines with Time% > 0.05.

Percentages at each level are relative

(for absolute percentages, specify: -s percent=a).

Table 1: Profile by Function Group and Function

Experiment=1 / Group / Function / PE='HIDE' / Thread=0='HIDE'

==

Totals for program

--

Time% 100.0%

Time 0.001362

Imb.Time --

Imb.Time% --

Calls 2628

PAPI_TLB_DM 0.712M/sec 881 misses

PAPI_L1_DCA 1173.861M/sec 1452993 ops

PAPI_FP_OPS 5.548M/sec 6867 ops

DATA_CACHE_MISSES 11.104M/sec 13745 misses

User time 0.001 secs 2970696 cycles

Utilization rate 90.9%

HW FP Ops / Cycles 0.00 ops/cycle

HW FP Ops / User time 5.548M/sec 6867 ops 0.0%peak

HW FP Ops / WCT 5.043M/sec

120 S–2396–20

Example CNL Applications [13]

Computation intensity 0.00 ops/ref

LD & ST per TLB miss 1649.25 refs/miss

LD & ST per D1 miss 105.71 refs/miss

D1 cache hit ratio 99.1%

% TLB misses / cycle 0.0%

==

88.2%

HW FP Ops / Cycles 0.00 ops/cycle

HW FP Ops / User time 4.585M/sec 4331 ops 0.0%peak

HW FP Ops / WCT 4.042M/sec

Computation intensity 0.00 ops/ref

LD & ST per TLB miss 1147.43 refs/miss

LD & ST per D1 miss 114.77 refs/miss

D1 cache hit ratio 99.1%

% TLB misses / cycle 0.0%

==

<snip>

Notes for table 3:

Table option:

-O program_time

Options implied by table option:

-d pt -b ex,pe,th=[mmm]

Table 3: Program Wall Clock Time

Process |Experiment=1

Time |PE

| Thread=0[mmm]

0.008343 |Total

|------------------------

| 0.009220 |pe.1

| 0.009074 |pe.0

| 0.007577 |pe.2

| 0.007501 |pe.3

|========================

List program1.rpt2:

% more program1.rpt2

CrayPat/X: Version 3.2 Revision 799 (xf 784) 04/23/07 07:49:22

S–2396–20 121

Cray XT™ Series Programming Environment User’s Guide

Experiment: trace

Experiment data file:

/lus/nid00011/user1/cnl/program1+pat+3820tdt/*.xf (RTS)

Original program: /lus/nid00011/user1/cnl/program1

Instrumented with: pat_build -u -g mpi program1 program1+pat

Instrumented program: /lus/nid00011/user1/cnl/./program1+pat

Program invocation: ./program1+pat

Number of PEs: 4

Exit Status: 0 PEs: 0-3

Runtime environment variables:

MPICHBASEDIR=/opt/xt-mpt/2.0.05/mpich2-64

MPICH_DIR=/opt/xt-mpt/2.0.05/mpich2-64/P2

MPICH_DIR_FTN_DEFAULT64=/opt/xt-mpt/2.0.05/mpich2-64/P2W

PAT_BUILD_ASYNC=0

PAT_ROOT=/opt/xt-tools/craypat/3.2.1/cpatx

PAT_RT_EXPFILE_PER_PROCESS=1

PAT_RT_HWPC=1

Report time environment variables:

PAT_ROOT=/opt/xt-tools/craypat/3.2.1/cpatx

Report command line options: -O calltree

System type and speed: x86_64 2400 MHz

Operating system:

Linux 2.6.16.27-0.9-cnl #1 SMP Tue May 8 18:24:11 PDT 2007

Hardware performance counter events:

PAPI_TLB_DM Data translation lookaside buffer misses

PAPI_L1_DCA Level 1 data cache accesses

PAPI_FP_OPS Floating point operations

DATA_CACHE_MISSES Data Cache Misses

User_Cycles Virtual Cycles

122 S–2396–20

Example CNL Applications [13]

Estimated minimum overhead per call of a traced function,

which was subtracted from the data shown in this report

(for raw data, use the option: -s overhead=include):

PAPI_TLB_DM 0.000 misses

PAPI_L1_DCA 1282.080 ops

PAPI_FP_OPS 3.000 ops

DATA_CACHE_MISSES 8.312 misses

User_Cycles 4302.000 cycles

Time 1.799 microseconds

Number of traced functions: 42

Notes for table 1:

Table option:

-O calltree

Options implied by table option:

-d ti%@0.05,cum_ti%,ti,tr,P -b ex,ct,pe=HIDE,th=HIDE

This table shows only lines with Time% > 0.05.

Percentages at each level are relative

(for absolute percentages, specify: -s percent=a).

Table 1: Function Calltree View

Experiment=1 / Calltree / PE='HIDE' / Thread=0='HIDE'

==

Totals for program

--

Time% 100.0%

Cum.Time% 100.0%

Time 0.001362

Calls 2628

PAPI_TLB_DM 0.712M/sec 881 misses

PAPI_L1_DCA 1173.861M/sec 1452993 ops

PAPI_FP_OPS 5.548M/sec 6867 ops

DATA_CACHE_MISSES 11.104M/sec 13745 misses

User time 0.001 secs 2970696 cycles

Utilization rate 90.9%

HW FP Ops / Cycles 0.00 ops/cycle

S–2396–20 123

Cray XT™ Series Programming Environment User’s Guide

HW FP Ops / User time 5.548M/sec 6867 ops 0.0%peak

HW FP Ops / User time 5.548M/sec 6867 ops 0.0%peak

HW FP Ops / WCT 5.043M/sec

Computation intensity 0.00 ops/ref

LD & ST per TLB miss 1649.25 refs/miss

LD & ST per D1 miss 105.71 refs/miss

D1 cache hit ratio 99.1%

% TLB misses / cycle 0.0%

==

<snip>

exit

--

Time% 10.0%

Cum.Time% 100.0%

Time 0.000136

Calls 800

PAPI_TLB_DM 0 misses

PAPI_L1_DCA 1735.094M/sec 236515 ops

PAPI_FP_OPS 9.243M/sec 1260 ops

DATA_CACHE_MISSES 14.005M/sec 1909 misses

User time 0.000 secs 327150 cycles

Utilization rate 100.0%

HW FP Ops / Cycles 0.00 ops/cycle

HW FP Ops / User time 9.243M/sec 1260 ops 0.0%peak

HW FP Ops / WCT 9.243M/sec

Computation intensity 0.01 ops/ref

LD & ST per TLB miss 236515.00 refs/miss

LD & ST per D1 miss 123.89 refs/miss

D1 cache hit ratio 99.2%

% TLB misses / cycle 0.0%

==

Example 20: Using hardware performance counters

This example uses the same instrumented program as Example 19, page 117 and
generates reports showing hardware performance counter (HWPC) information.

Modules required:

xtpe-target-cnl

craypat

124 S–2396–20

Example CNL Applications [13]

Collect HWPC event set 1 information and generate report program1.rpt3 (for
a list of predefined event sets, see the hwpc(3) man page):

% setenv PAT_RT_HWPC 1

% aprun -n 4 ./program1+pat

CrayPat/X: Version 3.1 Revision 363 08/28/06 16:25:58

hello from pe 3 of 4

hello from pe 1 of 4

hello from pe 2 of 4

hello from pe 0 of 4

PE 1: sizeof(long) = 8

PE 1: The answer is: 42

Experiment data directory written:

/ufs/home/users/user1/pat/program1+pat+3820tdt

% pat_report program1+pat+3820tdt > program1.rpt3

Data file 4/4:

[....................]

List program1.rpt3:

Experiment: trace

Experiment data file:

/lus/nid00011/user1/cnl/program1+pat+3820tdt/*.xf (RTS)

Original program: /lus/nid00011/user1/cnl/program1

Instrumented with: pat_build -u -g mpi program1 program1+pat

Instrumented program: /lus/nid00011/user1/cnl/./program1+pat

Program invocation: ./program1+pat

Number of PEs: 4

Exit Status: 0 PEs: 0-3

Runtime environment variables:

MPICHBASEDIR=/opt/xt-mpt/2.0.05/mpich2-64

MPICH_DIR=/opt/xt-mpt/2.0.05/mpich2-64/P2

MPICH_DIR_FTN_DEFAULT64=/opt/xt-mpt/2.0.05/mpich2-64/P2W

PAT_BUILD_ASYNC=0

PAT_ROOT=/opt/xt-tools/craypat/3.2.1/cpatx

PAT_RT_EXPFILE_PER_PROCESS=1

S–2396–20 125

Cray XT™ Series Programming Environment User’s Guide

PAT_RT_HWPC=1

Report time environment variables:

PAT_ROOT=/opt/xt-tools/craypat/3.2.1/cpatx

Report command line options: <none>

System type and speed: x86_64 2400 MHz

Operating system:

Linux 2.6.16.27-0.9-cnl #1 SMP Tue May 8 18:24:11 PDT 2007

Hardware performance counter events:

PAPI_TLB_DM Data translation lookaside buffer misses

PAPI_L1_DCA Level 1 data cache accesses

PAPI_FP_OPS Floating point operations

DATA_CACHE_MISSES Data Cache Misses

User_Cycles Virtual Cycles

Estimated minimum overhead per call of a traced function,

which was subtracted from the data shown in this report

(for raw data, use the option: -s overhead=include):

PAPI_TLB_DM 0.000 misses

PAPI_L1_DCA 1282.080 ops

PAPI_FP_OPS 3.000 ops

DATA_CACHE_MISSES 8.312 misses

User_Cycles 4302.000 cycles

Time 1.799 microseconds

Number of traced functions: 42

Notes for table 1:

Table option:

-O profile

Options implied by table option:

-d ti%@0.05,ti,imb_ti,imb_ti%,tr,P \

-b ex,gr,fu,pe=HIDE,th=HIDE

Options for related tables not shown by default:

-O load_balance

-O callers

-O callers+src

126 S–2396–20

Example CNL Applications [13]

-O calltree

-O calltree+src

This table shows only lines with Time% > 0.05.

Percentages at each level are relative

(for absolute percentages, specify: -s percent=a).

Table 1: Profile by Function Group and Function

Experiment=1 / Group / Function / PE='HIDE' / Thread=0='HIDE'

==

Totals for program

--

Time% 100.0%

Time 0.001362

Imb.Time --

Imb.Time% --

Calls 2628

PAPI_TLB_DM 0.712M/sec 881 misses

PAPI_L1_DCA 1173.861M/sec 1452993 ops

PAPI_FP_OPS 5.548M/sec 6867 ops

DATA_CACHE_MISSES 11.104M/sec 13745 misses

User time 0.001 secs 2970696 cycles

Utilization rate 90.9%

HW FP Ops / Cycles 0.00 ops/cycle

HW FP Ops / User time 5.548M/sec 6867 ops 0.0%peak

HW FP Ops / WCT 5.043M/sec

Computation intensity 0.00 ops/ref

LD & ST per TLB miss 1649.25 refs/miss

LD & ST per D1 miss 105.71 refs/miss

D1 cache hit ratio 99.1%

% TLB misses / cycle 0.0%

==

<snip>

Notes for table 3:

Table option:

-O program_time

Options implied by table option:

-d pt -b ex,pe,th=[mmm]

S–2396–20 127

Cray XT™ Series Programming Environment User’s Guide

Table 3: Program Wall Clock Time

Process |Experiment=1

Time |PE

| Thread=0[mmm]

0.008343 |Total

|------------------------

| 0.009220 |pe.1

| 0.009074 |pe.0

| 0.007577 |pe.2

| 0.007501 |pe.3

|========================

Collect information about translation lookaside buffer (TLB) misses
(PAPI_TLB_DM) and generate report program1.rpt4:

% setenv PAT_RT_HWPC PAPI_TLB_DM

% aprun -n 4 ./program1+pat

hello from pe 0 of 4

hello from pe 1 of 4

PE 1: sizeof(long) = 8

PE 1: The answer is: 42

hello from pe 2 of 4

hello from pe 3 of 4

Experiment data file written:

/lus/nid00011/user1/cnl/program1+pat+3820tdt

Application 34876 resources: utime 0, stime 0

% pat_report program1+pat+2790tdt.xf > program1.rpt4

Data file 4/4: [....................]

List program1.rpt4:

CrayPat/X: Version 3.2 Revision 799 (xf 784) 04/23/07 07:49:22

Experiment: trace

Experiment data file:

/lus/nid00011/user1/cnl/program1+pat+2790tdt.xf (RTS)

Original program: /lus/nid00011/user1/cnl/program1

Instrumented with: pat_build -u -g mpi program1 program1+pat

128 S–2396–20

Example CNL Applications [13]

Instrumented program: /lus/nid00011/user1/cnl/./program1+pat

Program invocation: ./program1+pat

Number of PEs: 4

Exit Status: 0 PEs: 0-3

Runtime environment variables:

MPICHBASEDIR=/opt/xt-mpt/2.0.05/mpich2-64

MPICH_DIR=/opt/xt-mpt/2.0.05/mpich2-64/P2

MPICH_DIR_FTN_DEFAULT64=/opt/xt-mpt/2.0.05/mpich2-64/P2W

PAT_RT_HWPC=PAPI_TLB_DM

Report time environment variables:

PAT_ROOT=/opt/xt-tools/craypat/3.2.1/cpatx

Report command line options: <none>

System type and speed: x86_64 2400 MHz

Operating system:

Linux 2.6.16.27-0.9-cnl #1 SMP Tue May 8 18:24:11 PDT 2007

Hardware performance counter events:

PAPI_TLB_DM Data translation lookaside buffer misses

User_Cycles Virtual Cycles

Estimated minimum overhead per call of a traced function,

which was subtracted from the data shown in this report

(for raw data, use the option: -s overhead=include):

PAPI_TLB_DM 0.000 misses

User_Cycles 3690.000 cycles

Time 1.546 microseconds

Number of traced functions: 42

Notes for table 1:

Table option:

-O profile

Options implied by table option:

S–2396–20 129

Cray XT™ Series Programming Environment User’s Guide

-d ti%@0.05,ti,imb_ti,imb_ti%,tr,P -b gr,fu,pe=HIDE,th=HIDE

Options for related tables not shown by default:

-O load_balance

-O callers

-O callers+src

-O calltree

-O calltree+src

This table shows only lines with Time% > 0.05.

Percentages at each level are relative

(for absolute percentages, specify: -s percent=a).

Table 1: Profile by Function Group and Function

Group / Function / PE='HIDE' / Thread=0='HIDE'

==

Totals for program

--

Time% 100.0%

Time 0.001136

Imb.Time --

Imb.Time% --

Calls 2628

PAPI_TLB_DM 0.788M/sec 833 misses

User time 0.001 secs 2538210 cycles

Utilization rate 93.1%

% TLB misses / cycle 0.0%

==

<snip>

Notes for table 3:

Table option:

-O program_time

Options implied by table option:

-d pt -b pe,th=[mmm]

Table 3: Program Wall Clock Time

Process |PE

Time | Thread=0[mmm]

130 S–2396–20

Example CNL Applications [13]

0.132561 |Total

|------------------------

| 0.140586 |pe.3

| 0.140554 |pe.2

| 0.124558 |pe.1

| 0.124545 |pe.0

|========================

S–2396–20 131

Cray XT™ Series Programming Environment User’s Guide

132 S–2396–20

Example Catamount Applications [14]

This chapter gives examples showing how to compile, link, and run Catamount
applications. Use the module list command to verify that the correct modules
are loaded. If the xtpe-target-cnl module is loaded, use:

% module swap xtpe-target-cnl xtpe-target-catamount

Each following example lists the additional modules that have to be loaded.

Example 21: Basics of running a Catamount application

This example shows how to use the PGI C compiler to compile an MPI program
and yod to launch the executable.

Modules required:

xtpe-target-catamount

PrgEnv-pgi

Create a C program, simple.c:

#include "mpi.h"

int main(int argc, char *argv[])

{

int rank;

int numprocs;

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

printf("hello from pe %d of %d\n",rank,numprocs);

MPI_Finalize();

}

Compile the program:

% cc -o simple simple.c

Run the program:

% yod -sz 6 simple

hello from pe 3 of 6

hello from pe 0 of 6

hello from pe 3 of 6

S–2396–20 133

Cray XT™ Series Programming Environment User’s Guide

hello from pe 5 of 6

hello from pe 2 of 6

hello from pe 1 of 6

hello from pe 4 of 6

Example 22: Basics of running an MPI application

This example shows how to compile, link, and run an MPI program. The MPI
program distributes the work represented in a reduction loop, prints the subtotal
for each PE, combines the results from the PEs, and prints the total.

Module required:

xtpe-target-catamount

Create a Fortran program, reduce.f90:

program reduce

include "mpif.h"

integer n, nres, ierr

call MPI_INIT (ierr)

call MPI_COMM_RANK (MPI_COMM_WORLD,mype,ierr)

call MPI_COMM_SIZE (MPI_COMM_WORLD,npes,ierr)

nres = 0

n = 0

do i=mype,100,npes

n = n + i

enddo

print *, 'My PE:', mype, ' My part:',n

call MPI_REDUCE (n,nres,1,MPI_INTEGER,MPI_SUM,0,MPI_COMM_WORLD,ierr)

if (mype == 0) print *,' PE:',mype,'Total is:',nres

call MPI_FINALIZE (ierr)

end

Compile reduce.f90 and create executable reduce:

% ftn -o reduce reduce.f90

134 S–2396–20

Example Catamount Applications [14]

Run the program:

% yod -sz 2 reduce

My PE: 0 My part: 2550

My PE: 1 My part: 2500

PE: 0 Total is: 5050

If desired, you could use this C version of the program:

/* program reduce */

#include <stdio.h>

#include "mpi.h"

int main (int argc, char *argv[])

{

int i, sum, mype, npes, nres, ret;

ret = MPI_Init (&argc, &argv);

ret = MPI_Comm_size (MPI_COMM_WORLD, &npes);

ret = MPI_Comm_rank (MPI_COMM_WORLD, &mype);

nres = 0;

sum = 0;

for (i = mype; i <=100; i += npes) {

sum = sum + i;

}

(void) printf ("My PE:%d My part:%d\n",mype, sum);

ret = MPI_Reduce (&sum,&nres,1,MPI_INTEGER,MPI_SUM,0,MPI_COMM_WORLD);

if (mype == 0)

{

(void) printf ("PE:%d Total is:%d\n",mype, nres);

}

ret = MPI_Finalize ();

}

S–2396–20 135

Cray XT™ Series Programming Environment User’s Guide

Example 23: Running an MPI work distribution program

This example uses MPI solely to identify the processor associated with each
process and select the work to be done by each processor. Each processor writes
its output directly to stdout.

Module required:

xtpe-target-catamount

Source code of Fortran main program (prog.f90):

program main

include 'mpif.h'

call MPI_Init(ierr) ! Required

call MPI_Comm_rank(MPI_COMM_WORLD,mype,ierr)

call MPI_Comm_size(MPI_COMM_WORLD,npes,ierr)

print *,'hello from pe',mype,' of',npes

do i=1+mype,1000,npes ! Distribute the work

call work(i,mype)

enddo

call MPI_Finalize(ierr) ! Required

end

The C function work.c processes a single item of work.

Source code of work.c:

#include <stdio.h>

void work_(int *N, int *MYPE)

{

int n=*N, mype=*MYPE;

if (n == 42) {

printf("PE %d: sizeof(long) = %d\n",mype,sizeof(long));

printf("PE %d: The answer is: %d\n",mype,n);

}

}

Compile work.c:

% cc -c work.c

136 S–2396–20

Example Catamount Applications [14]

Compile prog.f90, load work.o, and create executable program1:

% ftn -o program1 prog.f90 work.o

Run program1:

% yod -sz 2 program1

Output from program1:

hello from pe 0 of 2

hello from pe 1 of 2

PE 1: sizeof(long) = 8

PE 1: The answer is: 42

If you want to use a C main program instead of the Fortran main program,
compile prog.c:

#include <stdio.h>

#include <mpi.h> /* Required */

main(int argc, char **argv)

{

int i,mype,npes;

MPI_Init(&argc,&argv); /* Required */

MPI_Comm_rank(MPI_COMM_WORLD,&mype);

MPI_Comm_size(MPI_COMM_WORLD,&npes);

printf("hello from pe %d of %d\n",mype,npes);

for (i=1+mype; i<=1000; i+=npes) { /* distribute the work */

work_(&i, &mype);

}

MPI_Finalize(); /* Required */

}

Example 24: Combining results from all processors using MPI

In this example, MPI combines the results from each processor. PE 0 writes the
output to stdout.

Module required:

xtpe-target-catamount

S–2396–20 137

Cray XT™ Series Programming Environment User’s Guide

Source code of Fortran main program (prog1.f90):

program main

include 'mpif.h'

integer work1

call MPI_Init(ierr)

call MPI_Comm_rank(MPI_COMM_WORLD,mype,ierr)

call MPI_Comm_size(MPI_COMM_WORLD,npes,ierr)

n=0

do i=1+mype,1000,npes

n = n + work1(i,mype)

enddo

call MPI_Reduce(n,nres,1,MPI_INTEGER,MPI_SUM,0,MPI_COMM_WORLD,ier)

if (mype.eq.0) print *,'PE',mype,': The answer is:',nres

call MPI_Finalize(ierr)

end

The C function work1.c processes a single item of work.

Source code of work1.c:

int work1_(int *N, int *MYPE)

{

int n=*N, mype=*MYPE;

int mysum=0;

switch(n) {

case 12: mysum+=n;

case 68: mysum+=n;

case 94: mysum+=n;

case 120: mysum+=n;

case 19: mysum-=n;

case 103: mysum-=n;

case 53: mysum-=n;

case 77: mysum-=n;

}

return mysum;

}

138 S–2396–20

Example Catamount Applications [14]

Compile work1.c and prog1.f90:

% cc -c work1.c

% ftn -o program2 prog1.f90 work1.o

Run program2:

% yod -sz 3 program2

PE 0 : The answer is: -1184

If you want to use a C main program instead of the Fortran main program,
compile prog1.c:

#include <stdio.h>

#include <mpi.h>

main(int argc, char **argv)

{

int i,mype,npes,n=0,res;

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD,&mype);

MPI_Comm_size(MPI_COMM_WORLD,&npes);

for (i=mype; i<1000; i+=npes) {

n += work1_(&i, &mype);

}

MPI_Reduce(&n,&res,1,MPI_INT,MPI_SUM,0,MPI_COMM_WORLD);

if (!mype) {

printf("PE %d: The answer is: %d\n",mype,res);

}

MPI_Finalize();

}

and link it with work1.o:

% cc -o program3 prog1.c work1.o

Example 25: Using the Cray shmem_put function

This example shows how to use the shmem_put64() function to copy a
contiguous data object from the local PE to a contiguous data object on a different
PE.

S–2396–20 139

Cray XT™ Series Programming Environment User’s Guide

Module required:

xtpe-target-catamount

Source code of C program (shmem1.c):

/*

* simple put test

*/

#include <stdio.h>

#include <stdlib.h>

#include <mpp/shmem.h>

/* Dimension of source and target of put operations */

#define DIM 1000000

long target[DIM];

long local[DIM];

main(int argc,char **argv)

{

register int i;

int my_partner, my_pe;

/* Prepare resources required for correct functionality

of SHMEM on XT3. Alternatively, shmem_init() could

be called. */

start_pes(0);

for (i=0; i<DIM; i++) {

target[i] = 0L;

local[i] = shmem_my_pe() + (i * 10);

}

my_pe = shmem_my_pe();

if(shmem_n_pes()%2) {

if(my_pe == 0) printf("Test needs even number of processes\n");

/* Clean up resources before exit. */

shmem_finalize();

exit(0);

}

140 S–2396–20

Example Catamount Applications [14]

shmem_barrier_all();

/* Test has to be run on two procs. */

my_partner = my_pe % 2 ? my_pe - 1 : my_pe + 1;

shmem_put64(target,local,DIM,my_partner);

/* Synchronize before verifying results. */

shmem_barrier_all();

/* Check results of put */

for(i=0; i<DIM; i++) {

if(target[i] != (my_partner + (i * 10))) {

fprintf(stderr,"FAIL (1) on PE %d target[%d] = %d (%d)\n",

shmem_my_pe(), i, target[i],my_partner+(i*10));

shmem_finalize();

exit(-1);

}

}

printf(" PE %d: Test passed.\n",my_pe);

/* Clean up resources. */

shmem_finalize();

}

Compile shmem1.c and create executable shmem1:

% cc -o shmem1 shmem1.c

Run shmem1:

% yod -sz 4 shmem1

PE 2: Test passed.

PE 1: Test passed.

PE 3: Test passed.

PE 0: Test passed.

Example 26: Using the Cray shmem_get function

This example shows how to use the shmem_get function to copy a contiguous
data object from a different PE to a contiguous data object on the local PE.

Note: The Fortran module for Cray SHMEM is not supported. Use the
INCLUDE 'mpp/shmem.fh' statement instead.

S–2396–20 141

Cray XT™ Series Programming Environment User’s Guide

Module required:

xtpe-target-catamount

Source code of Fortran program (shmem2.f90):

program reduction

include 'mpp/shmem.fh'

real values, sum

common /c/ values

real work

call start_pes(0)

values=my_pe()

call shmem_barrier_all! Synchronize all PEs

sum = 0.0

do i = 0,num_pes()-1

call shmem_get(work, values, 1, i) ! Get next value

sum = sum + work ! Sum it

enddo

print*, 'PE',my_pe(),' computedsum=',sum

call shmem_barrier_all

call shmem_finalize

end

Compile shmem2.f90 and create executable shmem2:

% ftn -o shmem2 shmem2.f90

Run shmem2:

% yod -np 2 shmem2

PE 0 computedsum= 1.000000

PE 1 computedsum= 1.000000

Example 27: Turning off the PGI FORTRAN STOP message

This example shows how to use the NO_STOP_MESSAGE environment variable to
turn of the FORTRAN STOP message.

Modules required:

xtpe-target-catamount

142 S–2396–20

Example Catamount Applications [14]

PrgEnv-pgi

Source code of program test_stop.f90:

program test_stop

read *, i

if (i == 1) then

stop "I was 1"

else

stop

end if

end

Verify that the PrgEnv-pgi module is loaded.

Compile program test_stop.f90 and create executable test_stop:

% ftn -o test_stop test_stop.f90

Run test_stop:

% yod -sz 2 test_stop

1

0

Execution results:

I was 1

FORTRAN STOP

Turn off the FORTRAN STOP messages:

% setenv NO_STOP_MESSAGE

Run test_stop again:

% yod -sz 2 test_stop

1

0

Execution results:

I was 1

Example 28: Using dclock() to calculate elapsed time

The following example uses the dclock() function to calculate the elapsed time
of a program segment.

S–2396–20 143

Cray XT™ Series Programming Environment User’s Guide

Module required:

xtpe-target-catamount

Source code of dclock.c:

#include <catamount/dclock.h>

main()

{

double start_time, end_time, elapsed_time;

start_time = dclock();

sleep(5);

end_time = dclock();

elapsed_time = end_time - start_time;

printf("\nElapsed time = %f\n",elapsed_time);

}

Compile dclock.c and create executable dclock:

% cc -o dclock dclock.c

Run dclock:

% yod dclock

Elapsed time = 5.000007

Example 29: Specifying a buffer for I/O

An important consideration for C++ I/O in Catamount applications is that the
endl function causes the data in the buffer to be flushed. In most cases, the
endl function is used to output a new line, so an endl function usually can be
replaced in the code by specifying a newline character. In this example, endl is
redefined to be '\n'. If a flush is needed, you can include a call to the flush()
member function.

Module required:

xtpe-target-catamount

Source code of io1.C

#include <iostream>

#include <catamount/dclock.h>

using namespace std;

144 S–2396–20

Example Catamount Applications [14]

#define endl '\n'

int main(int argc, char ** argv) {

double start, end;

char *buffer;

buffer = (char *)malloc(sizeof(char)*12000);

cout.rdbuf()->pubsetbuf(buffer,12000);

start = dclock();

for (int i = 0; i < 1000; i++) {

cout << "line: " << i << endl;

}

end = dclock();

cout.flush(); // Force a flush of data (not necessary)

cerr << "Time to write using buffer = " << end - start << endl;

return 0;

}

Compile io1.C:

% CC -o io1 io1.C

Run io1, directing output to file tmp:

% yod io1 > tmp

% cat tmp

Time to write using buffer = 0.000599465

Example 30: Changing default buffer size for I/O to file streams

This example uses a default buffer and a modified buffer to write data and prints
the time-to-write value for each process.

Module required:

xtpe-target-catamount

Source code of io2.C

#include <iostream>

#include <fstream>

#include <catamount/dclock.h>

using namespace std;

#define endl '\n'

S–2396–20 145

Cray XT™ Series Programming Environment User’s Guide

char data[] = " 2345678901234567890123456789 \

0123456789012345678901234567890";

int main(int argc, char ** argv) {

double start, end;

char *buffer;

// Use default buffer

ofstream data1("output1");

start = dclock();

for (int i = 0; i < 10000; i++) {

data1 << "line: " << i << data << endl;

}

end = dclock();

data1.flush(); // Force a flush of data (not necessary)

cerr << "Time to write using default buffer = " \

<< end - start << endl ;

// Set up a buffer

ofstream data2("output2");

buffer = (char *)malloc(sizeof(char)*500000);

data2.rdbuf()->pubsetbuf(buffer,500000);

start = dclock();

for (int i = 0; i < 10000; i++) {

data2 << "line: " << i << data << endl;

}

end = dclock();

data2.flush(); // Force a flush of data (not necessary)

cerr << "Time to write with program buffer = " \

<< end - start << endl ;

return 0;

}

Compile io2.C:

% CC -o io2 io2.C

Run io2:

% yod io2

Time to write using default buffer = 0.0128506

Time to write with program buffer = 0.0237463

146 S–2396–20

Example Catamount Applications [14]

Example 31: Improving performance of stdout

The following program improves the performance of the printf() loop by
using setvbuf() with the mode of _IOFBF (fully buffered) and a buffer size
of 1024:

Module required:

xtpe-target-catamount

Source code of C program (setvbuf1.c):

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

int i,bsize,count;

char *buf;

i=1;

bsize = (i<argc) ? atoi(argv[i++]) : 1024;

count = (i<argc) ? atoi(argv[i++]) : 1024;

if(bsize > 0) {

buf = malloc(bsize);

setvbuf(stdout, buf, _IOFBF, bsize);

}

for(i=0;i<count;i++) {

printf("this is line %5d\n",i);

}

exit(0);

}

Compile setvbuf1.c and create executable setvbuf1:

% cc -o setvbuf1 setvbuf1.c

Run setvbuf1:

% yod setvbuf1

this is line 0

this is line 1

S–2396–20 147

Cray XT™ Series Programming Environment User’s Guide

this is line 2

this is line 3

...

this is line 1021

this is line 1022

this is line 1023

Example 32: Using a PBS Pro job script

This example of a job script, script1, requests four processors to run
application program1 (see Example 23, page 136).

Modules required:

xtpe-target-catamount

pbs

Do not load the xt-pbs module. Unload it if it has been loaded.

Create script1.

% cat script1

#!/bin/bash

#

Define the destination of this job

as the queue named "workq":

#PBS -q workq

#PBS -l mppwidth=4

Tell PBS Pro to keep both standard output and

standard error on the execution host:

#PBS -k eo

yod -sz 4 program1

exit 0

Set permissions to executable:

% chmod +x script1

Submit the job:

% qsub script1

The qsub command produces a batch job log file with output from program1.
The job log file has the form script1.onnnnnn.

% cat script1.o4595

hello from pe 0 of 4

148 S–2396–20

Example Catamount Applications [14]

hello from pe 3 of 4

hello from pe 2 of 4

hello from pe 1 of 4

PE 1: sizeof(long) = 8

PE 1: The answer is: 42

Example 33: Running an MPI program under PBS Pro

This example shows a batch script that runs the program simple.c (see
Example 21, page 133).

Modules required:

xtpe-target-catamount

pbs

Do not load the xt-pbs module. Unload it if it has been loaded.

Create script2:

% cat script2

#PBS -N s_job

#PBS -l mppwidth=6

#PBS -joe

cd $PBS_O_WORKDIR

yod -sz 6 simple

Submit the script to the PBS Pro batch system:

% qsub script2

Display the job results:

% cat s_job.o4596

hello from pe 0 of 6

hello from pe 3 of 6

hello from pe 2 of 6

hello from pe 5 of 6

hello from pe 1 of 6

hello from pe 4 of 6

Example 34: Running an MPI_REDUCE program under PBS Pro

This example shows a batch script that runs the program reduce.f90 (Example
22, page 134).

S–2396–20 149

Cray XT™ Series Programming Environment User’s Guide

Modules required:

xtpe-target-catamount

pbs

Do not load the xt-pbs module. Unload it if it has been loaded.

Create a batch script, run_reduce, verifying that the executable is in a directory
in the Lustre file system (see Section 2.4, page 11):

% cat run_reduce

#!/bin/sh

#PBS -l mppwidth=2

#PBS -joe

#PBS -l walltime=00:30:00

cd $HOME/pe_user/

echo "Running the Example reduce "

echo ""

date

echo ""

yod -sz 2 reduce

set permissions to executable:

% chmod +x run_reduce

Submit the script to the PBS Pro batch system:

% qsub run_reduce

Display the job results:

% cat run_reduce.o70977

Running the Example reduce

Wed May 9 13:36:52 CDT 2007

My PE: 1 My part: 2500

My PE: 0 My part: 2550

PE: 0 Total is: 5050

150 S–2396–20

Example Catamount Applications [14]

Example 35: Using a script to create and run a batch job

This example script takes two arguments, the name of a program (shmem2,
see Example 26, page 141) and the number of processors on which to run the
program. The script performs the following actions:

1. Creates a temporary file that contains a PBS Pro batch job script

2. Submits the file to PBS Pro

3. Deletes the temporary file

Modules required:

xtpe-target-catamount

pbs

Do not load the xt-pbs module. Unload it if it has been loaded.

Create script run123:

% cat run123

#!/bin/csh

if ("$1" == "") then

echo "Usage: run [executable|script] [ncpus]"

exit

endif

set n=1 # set default number of CPUs

if ("$2" != "") set n=$2

cat > job.$$ <<EOT #creates the batch jobscript

#!/bin/csh

#PBS -N $1

#PBS -l mppwidth=$n

#PBS -joe

cd \$PBS_O_WORKDIR

yod -sz $n -tlimit 30 $1

EOT

qsub job.$$ # submit batch job

rm job.$$

Set file permissions to executable:

% chmod +x run123

Run the job script:

% ./run123 shmem2 4

S–2396–20 151

Cray XT™ Series Programming Environment User’s Guide

List the job output:

% cat shmem2.o4611

PE 1 computedsum= 6.000000

PE 0 computedsum= 6.000000

PE 3 computedsum= 6.000000

PE 2 computedsum= 6.000000

Example 36: Running multiple sequential applications

To run multiple sequential applications, the number of processors you specify as
an argument to qsub must be equal to or greater than the largest number of
processors required by an invocation of yod in your script. For example, in job
script mult_seq_qk, the -l mppwidth is 4 because the largest yod sz value
is 4.

Modules required:

xtpe-target-catamount

pbs

Do not load the xt-pbs module. Unload it if it has been loaded.

Create script mult_seq_qk:

#!/bin/bash

#

Define the destination of this job

as the queue named "workq":

#PBS -q workq

#PBS -l mppwidth=4

Tell PBS Pro to keep both standard output and

standard error on the execution host:

#PBS -k eo

yod -sz 2 program1

yod -sz 3 program2

yod -sz 4 shmem1

yod -sz 2 shmem2

exit 0

The script launches applications program1 (see Example 23, page 136),
program2 (see Example 24, page 137), shmem1 (see Example 25, page 139), and
shmem2 (see Example 26, page 141).

Set file permissions to executable:

% chmod +x mult_seq_qk

152 S–2396–20

Example Catamount Applications [14]

Run the script:

% qsub mult_seq_qk

List the output:

% cat mult_seq_qk.o4618

hello from pe 0 of 2

hello from pe 1 of 2

PE 1: sizeof(long) = 8

PE 1: The answer is: 42

PE 0 : The answer is: -1184

PE 2: Test passed.

PE 3: Test passed.

PE 0: Test passed.

PE 1: Test passed.

PE 1 computedsum= 1.000000

PE 0 computedsum= 1.000000

Example 37: Running multiple parallel applications

If you are running multiple parallel applications, the number of processors must
be equal to or greater than the total number of processors specified by calls to
yod. For example, in job script mult_par_qk, the -l mppwidth value is 11
because the total of the yod sz values is 11.

Modules required:

xtpe-target-catamount

pbs

Do not load the xt-pbs module. Unload it if it has been loaded.

Create script mult_par_qk:

#!/bin/bash

#

Define the destination of this job

as the queue named "workq":

#PBS -q workq

#PBS -l mppwidth=11

Tell PBS Pro to keep both standard output and

standard error on the execution host:

#PBS -k eo

yod -sz 2 program1 &

yod -sz 3 program2 &

S–2396–20 153

Cray XT™ Series Programming Environment User’s Guide

yod -sz 4 shmem1 &

yod -sz 2 shmem2 &

exit 0

The script launches applications program1 (see Example 23, page 136),
program2 (see Example 24, page 137), shmem1 (see Example 25, page 139), and
shmem2 (see Example 26, page 141).

Set file permissions to executable:

% chmod +x mult_par_qk

Run the script:

% qsub mult_par_qk

List the output:

% cat mult_par_qk.o13422

hello from pe 0 of 2

hello from pe 1 of 2

PE 1: sizeof(long) = 8

PE 1: The answer is: 42

PE 0 : The answer is: -1184

PE 0: Test passed.

PE 3: Test passed.

PE 2: Test passed.

PE 1: Test passed.

PE 0 computedsum= 1.000000

PE 1 computedsum= 1.000000

Example 38: Using xtgdb to debug a program

This example uses the GNU debugger, xtgdb, to debug a program.

Modules required:

xtpe-target-catamount

xtgdb

Compile program hi.c:

% cc -g hi.c

Initiate a PBS Pro interactive session:

% qsub -I

154 S–2396–20

Example Catamount Applications [14]

Run xtgdb:

% xtgdb yod a.out

Debugging a.out

Target port is 33381

Please wait while connecting to catamount...

target remote :33381

Remote debugging using :33381

0x0000000000200001 in _start ()

Set breakpoints, resume execution, and quit the gdb session:

(gdb) b main

Breakpoint 3 at 0x205674: file hi.c, line 3.

(gdb) c

Continuing.

Breakpoint 3, main () at hi.c:3

3 printf("hello.c\n");

(gdb) c

Continuing.

hello.c

Program exited with code 0377.

(gdb) quit

Done

Example 39: Using the high-level PAPI interface

PAPI provides simple high-level interfaces for instrumenting applications written
in C or Fortran. This example shows the use of the PAPI_start_counters()
and PAPI_stop_counters() functions.

S–2396–20 155

Cray XT™ Series Programming Environment User’s Guide

Modules required:

xtpe-target-catamount

papi

Source code of papi_hl.c:

#include <papi.h>

void main()

{

int retval, Events[2]= {PAPI_TOT_CYC, PAPI_TOT_INS};

long_long values[2];

if (PAPI_start_counters (Events, 2) != PAPI_OK) {

printf("Error starting counters\n");

exit(1);

}

/* Do some computation here... */

if (PAPI_stop_counters (values, 2) != PAPI_OK) {

printf("Error stopping counters\n");

exit(1);

}

printf("PAPI_TOT_CYC = %lld\n", values[0]);

printf("PAPI_TOT_INS = %lld\n", values[1]);

}

Compile papi_hl.c:

% cc -o papi_hl papi_hl.c

Run papi_hl:

% yod papi_hl

PAPI_TOT_CYC = 3287

PAPI_TOT_INS = 287

Example 40: Using the low-level PAPI interface

PAPI provides an advanced low-level interface for instrumenting applications.
The PAPI library must be initialized before calling any of these functions;
initialization can be done by issuing either a high-level function call or
a call to PAPI_library_init(). This example shows the use of the

156 S–2396–20

Example Catamount Applications [14]

PAPI_create_eventset(), PAPI_add_event()), PAPI_start(), and
PAPI_read() functions.

Modules required:

xtpe-target-catamount

papi

Source code of papi_ll.c:

#include <papi.h>

void main()

{

int EventSet = PAPI_NULL;

long_long values[1];

/* Initialize PAPI library */

if (PAPI_library_init(PAPI_VER_CURRENT) != PAPI_VER_CURRENT) {

printf("Error initializing PAPI library\n");

exit(1);

}

/* Create Event Set */

if (PAPI_create_eventset(&EventSet) != PAPI_OK) {

printf("Error creating eventset\n");

exit(1);

}

/* Add Total Instructions Executed to eventset */

if (PAPI_add_event (EventSet, PAPI_TOT_INS) != PAPI_OK) {

printf("Error adding event\n");

exit(1);

}

/* Start counting ... */

if (PAPI_start (EventSet) != PAPI_OK) {

printf("Error starting counts\n");

exit(1);

}

/* Do some computation here...*/

if (PAPI_read (EventSet, values) != PAPI_OK) {

printf("Error stopping counts\n");

S–2396–20 157

Cray XT™ Series Programming Environment User’s Guide

exit(1);

}

printf("PAPI_TOT_INS = %lld\n", values[0]);

}

Compile papi_ll.c:

% cc -o papi_ll papi_ll.c

Run papi_ll:

% yod papi_ll

PAPI_TOT_INS = 153

Example 41: Using basic CrayPat functions

This example shows how to instrument a program, run the instrumented
program, and generate CrayPat reports.

Modules required:

xtpe-target-catamount

craypat

Compile the sample program prog.f90 and the routine it calls, work.c.

Source code of prog.f90:

program main

include 'mpif.h'

call MPI_Init(ierr) ! Required

call MPI_Comm_rank(MPI_COMM_WORLD,mype,ierr)

call MPI_Comm_size(MPI_COMM_WORLD,npes,ierr)

print *,'hello from pe',mype,' of',npes

do i=1+mype,1000,npes ! Distribute the work

call work(i,mype)

enddo

call MPI_Finalize(ierr) ! Required

end

Source code of work.c:

void work_(int *N, int *MYPE)

158 S–2396–20

Example Catamount Applications [14]

{

int n=*N, mype=*MYPE;

if (n == 42) {

printf("PE %d: sizeof(long) = %d\n",mype,sizeof(long));

printf("PE %d: The answer is: %d\n",mype,n);

}

}

Compile prog.f90 and work.c and create executable program1:

% cc -c work.c

% ftn -o program1 prog.f90 work.o

Run pat_build to generate instrumented program program1+pat:

% pat_build -u -g mpi program1 program1+pat

INFO: A trace intercept routine was created for the function 'work_'.

INFO: a total of 39 function entry points were traced

The tracegroup (-g option) is mpi.

Set environment variable PAT_RT_EXPFILE_PER_PROCESS:

% setenv PAT_RT_EXPFILE_PER_PROCESS 1

Run program1+pat:

% yod -sz 4 program1+pat

CrayPat/X: Version 3.2 Revision 799 04/23/07 08:02:31

hello from pe 3 of 4

hello from pe 1 of 4

hello from pe 2 of 4

hello from pe 0 of 4

PE 1: sizeof(long) = 8

PE 1: The answer is: 42

Experiment data file written:

/lus/nid00007/user1/catamount/program1+pat+87td.xf

Note: When executed, the instrumented executable creates directory
progname+pat+PIDkeyletters that contains one or more data files with a .xf
suffix. PID is the process ID that was assigned to the instrumented program
at run time.

S–2396–20 159

Cray XT™ Series Programming Environment User’s Guide

Run pat_report to generate reports program1.rpt1 (using default
pat_report options) and program1.rpt2 (using the -O calltree option).

% pat_report program1+pat+87td.xf > program1.rpt1

Data file 4/4: [....................]

% pat_report -O calltree program1+pat+87td.xf > program1.rpt2

Data file 4/4: [....................]

List program1.rpt1:

CrayPat/X: Version 3.2 Revision 799 (xf 784) 04/23/07 08:02:31

Experiment: trace

Experiment data file:

/lus/nid00007/user1/catamount/program1+pat+87td.xf (RTS)

Original program: /lus/nid00007/user1/catamount/program1

Instrumented with: pat_build -u -g mpi program1 program1+pat

Instrumented program: /lus/nid00007/user1/catamount/program1+pat

Program invocation: program1+pat

Number of PEs: 4

Exit Status: 0 PEs: 0-3

Runtime environment variables:

MPICHBASEDIR=/opt/xt-mpt/2.0.06/mpich2-64

MPICH_DIR=/opt/xt-mpt/2.0.06/mpich2-64/P2

MPICH_DIR_FTN_DEFAULT64=/opt/xt-mpt/2.0.06/mpich2-64/P2W

Report time environment variables:

PAT_ROOT=/opt/xt-tools/craypat/3.2.1/cpatx

Report command line options: <none>

System name, type, and speed: xt1 x86_64 2400 MHz

Operating system: catamount 1.0 2.0

Estimated minimum overhead per call of a traced function,

160 S–2396–20

Example Catamount Applications [14]

which was subtracted from the data shown in this report

(for raw data, use the option: -s overhead=include):

Time 0.617 microseconds

Number of traced functions: 52

Notes for table 1:

Table option:

-O profile

Options implied by table option:

-d ti%@0.05,ti,imb_ti,imb_ti%,tr -b gr,fu,pe=HIDE

Options for related tables not shown by default:

-O load_balance

-O callers

-O callers+src

-O calltree

-O calltree+src

This table shows only lines with Time% > 0.05.

Percentages at each level are relative

(for absolute percentages, specify: -s percent=a).

Table 1: Profile by Function Group and Function

Time % | Time |Imb. Time | Imb. | Calls |Group

| | | Time % | | Function

| | | | | PE='HIDE'

100.0% | 0.003184 | -- | -- | 2628 |Total

|--

| 98.1% | 0.003124 | -- | -- | 1012 |USER

||---

|| 97.0% | 0.003031 | 0.000113 | 4.8% | 4 |MAIN_

|| 2.3% | 0.000070 | 0.000193 | 97.7% | 1000 |work_

|| 0.7% | 0.000021 | 0.000000 | 0.9% | 4 |exit

|| 0.1% | 0.000002 | 0.000000 | 4.0% | 4 |main

||===

| 0.1% | 0.000002 | -- | -- | 16 |MPI

||---

|| 31.5% | 0.000001 | 0.000000 | 7.3% | 4 |mpi_init_

S–2396–20 161

Cray XT™ Series Programming Environment User’s Guide

|| 24.1% | 0.000000 | 0.000000 | 8.4% | 4 |mpi_comm_rank_

|| 23.6% | 0.000000 | 0.000000 | 5.7% | 4 |mpi_comm_size_

|| 20.8% | 0.000000 | 0.000000 | 22.3% | 4 |mpi_finalize_

|==

<snip>

Table 3: Program Wall Clock Time

Process |PE

Time |

0.256492 |Total

|------------

| 0.280461 |pe.1

| 0.264507 |pe.0

| 0.248539 |pe.2

| 0.232462 |pe.3

|===========

List program1.rpt2:

CrayPat/X: Version 3.2 Revision 799 (xf 784) 04/23/07 08:02:31

Experiment: trace

Experiment data file:

/lus/nid00007/user1/catamount/program1+pat+87td.xf (RTS)

Original program: /lus/nid00007/user1/catamount/program1

Instrumented with: pat_build -u -g mpi program1 program1+pat

Instrumented program: /lus/nid00007/user1/catamount/program1+pat

Program invocation: program1+pat

Number of PEs: 4

Exit Status: 0 PEs: 0-3

Runtime environment variables:

MPICHBASEDIR=/opt/xt-mpt/2.0.06/mpich2-64

MPICH_DIR=/opt/xt-mpt/2.0.06/mpich2-64/P2

162 S–2396–20

Example Catamount Applications [14]

MPICH_DIR_FTN_DEFAULT64=/opt/xt-mpt/2.0.06/mpich2-64/P2W

Report time environment variables:

PAT_ROOT=/opt/xt-tools/craypat/3.2.1/cpatx

Report command line options: -O calltree

System name, type, and speed: xt1 x86_64 2400 MHz

Operating system: catamount 1.0 2.0

Estimated minimum overhead per call of a traced function,

which was subtracted from the data shown in this report

(for raw data, use the option: -s overhead=include):

Time 0.617 microseconds

Number of traced functions: 52

Notes for table 1:

Table option:

-O calltree

Options implied by table option:

-d ti%@0.05,cum_ti%,ti,tr -b ct,pe=HIDE

This table shows only lines with Time% > 0.05.

Percentages at each level are relative

(for absolute percentages, specify: -s percent=a).

Table 1: Function Calltree View

Time % | Cum. | Time | Calls |Calltree

| Time % | | | PE='HIDE'

100.0% | 100.0% | 0.003184 | 2628 |Total

|--

| 98.2% | 98.2% | 0.003126 | 1028 |main

||---

|| 99.3% | 99.3% | 0.003104 | 1020 |MAIN_

|||--

3|| 97.7% | 97.7% | 0.003031 | 4 |MAIN_(exclusive)

3|| 2.3% | 99.9% | 0.000070 | 1000 |work_

S–2396–20 163

Cray XT™ Series Programming Environment User’s Guide

|||==

|| 0.7% | 99.9% | 0.000021 | 4 |exit

|| 0.1% | 100.0% | 0.000002 | 4 |main(exclusive)

||===

| 1.3% | 99.5% | 0.000042 | 800 |__do_global_ctors

| 0.5% | 100.0% | 0.000016 | 800 |exit

|==

Example 42: Using hardware performance counters

This example uses the same instrumented program as Example 41, page 158 and
generates reports showing hardware performance counter (HWPC) information.

Modules required:

xtpe-target-catamount

craypat

Collect HWPC event set 1 information and generate report program1.rpt3 (for
a list of predefined event sets, see the hwpc(3) man page):

% setenv PAT_RT_HWPC 1

% yod -sz 4 program1+pat

CrayPat/X: Version 3.1 Revision 363 08/28/06 16:25:58

hello from pe 3 of 4

hello from pe 1 of 4

hello from pe 2 of 4

hello from pe 0 of 4

PE 1: sizeof(long) = 8

PE 1: The answer is: 42

Experiment data directory written:

/ufs/home/users/user1/pat/program1+pat+2518td

% pat_report program1+pat+2518td > program1.rpt3

Data file 4/4:

[....................]

List program1.rpt3:

CrayPat/X: Version 3.1 Revision 609 (xf 556) 01/23/07 11:48:46

Experiment: trace

Experiment data file:

/ufs/home/users/user1/guide_test/program1+pat+142td/*.xf (RTS)

Original program: /ufs/home/users/user1/guide_test/program1

164 S–2396–20

Example Catamount Applications [14]

Instrumented program: /ufs/home/users/user1/guide_test/program1+pat

Program invocation: program1+pat

Number of PEs: 4

Exit Status: 0 PEs: 0-3

Runtime environment variables:

MPICHBASEDIR=/opt/xt-mpt/1.4.48/mpich2-64

MPICH_DIR=/opt/xt-mpt/1.4.48/mpich2-64/P2

PAT_BUILD_ASYNC=0

PAT_ROOT=/opt/xt-tools/craypat/3.1.2/cpatx

PAT_RT_EXPFILE_PER_PROCESS=1

PAT_RT_HWPC=1

Report time environment variables:

PAT_ROOT=/opt/xt-tools/craypat/3.1.2/cpatx

Report command line options: <none>

Host name and type: sys1 x86_64 2400 MHz

Operating system: catamount 1.0 2.0

Hardware performance counter events:

PAPI_TLB_DM Data translation lookaside buffer misses

PAPI_L1_DCA Level 1 data cache accesses

PAPI_FP_OPS Floating point operations

DC_MISS Data Cache Miss

User_Cycles Virtual Cycles

Estimated minimum overhead per call of a traced function,

which was subtracted from the data shown in this report

(for raw data, use the option: -s overhead=include):

PAPI_TLB_DM 5.000 misses

PAPI_L1_DCA 1318.298 ops

PAPI_FP_OPS 0.000 ops

DC_MISS 4.509 ops

User_Cycles 2105.166 cycles

Time 0.877 microseconds

S–2396–20 165

Cray XT™ Series Programming Environment User’s Guide

Traced functions:

MAIN_ .../users/user1/guide_test/prog.f90

MPI_Abort ==NA==

<snip>

work_ .../users/user1/guide_test/work.c

Notes for table 1:

Table option:

-O profile

Options implied by table option:

-d ti%@0.05,ti,imb_ti,imb_ti%,tr,P -b ex,gr,fu,pe=HIDE

Options for related tables not shown by default:

-O load_balance

-O callers

-O callers+src

-O calltree

-O calltree+src

This table shows only lines with Time% > 0.05.

Percentages at each level are relative

(for absolute percentages, specify: -s percent=a).

Table 1: Profile by Function Group and Function

Experiment=1 / Group / Function / PE='HIDE'

==

Totals for program

--

Time% 100.0%

Time 0.002658

Imb.Time --

Imb.Time% --

Calls 17028

PAPI_TLB_DM 24.674M/sec 66159 misses

PAPI_L1_DCA 5042.230M/sec 13519803 ops

PAPI_FP_OPS 0.183M/sec 490 ops

166 S–2396–20

Example Catamount Applications [14]

DC_MISS 22.031M/sec 59073 ops

User time 0.003 secs 6435154 cycles

Utilization rate 100.0%

HW FP Ops / Cycles 0.00 ops/cycle

HW FP Ops / User time 0.183M/sec 490 ops 0.0%peak

HW FP Ops / WCT 0.183M/sec

Computation intensity 0.00 ops/ref

LD & ST per TLB miss 204.35 ops/miss

LD & ST per D1 miss 228.87 ops/miss

D1 cache hit ratio 99.6%

% TLB misses / cycle 0.3%

==

USER

--

Time% 62.7%

Time 0.001665

Imb.Time --

Imb.Time% --

Calls 1012

PAPI_TLB_DM 15.488M/sec 25796 misses

PAPI_L1_DCA 4702.512M/sec 7832225 ops

PAPI_FP_OPS 0.294M/sec 490 ops

DC_MISS 6.107M/sec 10172 ops

User time 0.002 secs 3997298 cycles

Utilization rate 100.0%

HW FP Ops / Cycles 0.00 ops/cycle

HW FP Ops / User time 0.294M/sec 490 ops 0.0%peak

HW FP Ops / WCT 0.294M/sec

Computation intensity 0.00 ops/ref

LD & ST per TLB miss 303.62 ops/miss

LD & ST per D1 miss 769.98 ops/miss

D1 cache hit ratio 99.9%

% TLB misses / cycle 0.2%

==

USER / work_

--

Time% 43.4%

Time 0.000723

Imb.Time 0.002141

Imb.Time% 99.7%

Calls 1000

PAPI_TLB_DM 0.291M/sec 211 misses

PAPI_L1_DCA 4228.537M/sec 3061262 ops

S–2396–20 167

Cray XT™ Series Programming Environment User’s Guide

PAPI_FP_OPS 0 ops

DC_MISS 0.724M/sec 524 ops

User time 0.001 secs 1737487 cycles

Utilization rate 100.0%

HW FP Ops / Cycles 0.00 ops/cycle

HW FP Ops / User time 0 ops 0.0%peak

HW FP Ops / WCT

Computation intensity 0.00 ops/ref

LD & ST per TLB miss 14508.35 ops/miss

LD & ST per D1 miss 5842.10 ops/miss

D1 cache hit ratio 100.0%

% TLB misses / cycle 0.0%

==

USER / MAIN_

--

Time% 31.4%

Time 0.000523

Imb.Time 0.000098

Imb.Time% 21.0%

Calls 4

PAPI_TLB_DM 10.621M/sec 5527 misses

PAPI_L1_DCA 4481.995M/sec 2332287 ops

PAPI_FP_OPS 0.411M/sec 214 ops

DC_MISS 6.378M/sec 3319 ops

User time 0.001 secs 1248883 cycles

Utilization rate 99.5%

HW FP Ops / Cycles 0.00 ops/cycle

HW FP Ops / User time 0.411M/sec 214 ops 0.0%peak

HW FP Ops / WCT 0.409M/sec

Computation intensity 0.00 ops/ref

LD & ST per TLB miss 421.98 ops/miss

LD & ST per D1 miss 702.71 ops/miss

D1 cache hit ratio 99.9%

% TLB misses / cycle 0.1%

==

USER / exit

--

Time% 25.1%

Time 0.000417

Imb.Time 0.000015

Imb.Time% 4.5%

Calls 4

PAPI_TLB_DM 47.731M/sec 20026 misses

168 S–2396–20

Example Catamount Applications [14]

PAPI_L1_DCA 5805.125M/sec 2435599 ops

PAPI_FP_OPS 0.648M/sec 272 ops

DC_MISS 14.913M/sec 6257 ops

User time 0.000 secs 1006944 cycles

Utilization rate 100.0%

HW FP Ops / Cycles 0.00 ops/cycle

HW FP Ops / User time 0.648M/sec 272 ops 0.0%peak

HW FP Ops / WCT 0.648M/sec

Computation intensity 0.00 ops/ref

LD & ST per TLB miss 121.62 ops/miss

LD & ST per D1 miss 389.26 ops/miss

D1 cache hit ratio 99.7%

% TLB misses / cycle 0.5%

==

USER / main

--

Time% 0.1%

Time 0.000002

Imb.Time 0.000000

Imb.Time% 2.3%

Calls 4

PAPI_TLB_DM 19.281M/sec 32 misses

PAPI_L1_DCA 1853.963M/sec 3077 ops

PAPI_FP_OPS 2.410M/sec 4 ops

DC_MISS 43.382M/sec 72 ops

User time 0.000 secs 3983 cycles

Utilization rate 95.3%

HW FP Ops / Cycles 0.00 ops/cycle

HW FP Ops / User time 2.410M/sec 4 ops 0.0%peak

HW FP Ops / WCT 2.298M/sec

Computation intensity 0.00 ops/ref

LD & ST per TLB miss 96.16 ops/miss

LD & ST per D1 miss 42.74 ops/miss

D1 cache hit ratio 97.7%

% TLB misses / cycle 0.2%

==

MPI

--

Time% 0.1%

Time 0.000003

Imb.Time --

Imb.Time% --

Calls 16

S–2396–20 169

Cray XT™ Series Programming Environment User’s Guide

PAPI_TLB_DM 18.966M/sec 51 misses

PAPI_L1_DCA 3298.175M/sec 8869 ops

PAPI_FP_OPS 0 ops

DC_MISS 68.053M/sec 183 ops

User time 0.000 secs 6454 cycles

Utilization rate 97.3%

HW FP Ops / Cycles 0.00 ops/cycle

HW FP Ops / User time 0 ops 0.0%peak

HW FP Ops / WCT

Computation intensity 0.00 ops/ref

LD & ST per TLB miss 173.90 ops/miss

LD & ST per D1 miss 48.46 ops/miss

D1 cache hit ratio 97.9%

% TLB misses / cycle 0.2%

==

MPI / mpi_comm_size_

--

Time% 28.8%

Time 0.000001

Imb.Time 0.000000

Imb.Time% 8.9%

Calls 4

PAPI_TLB_DM 13.741M/sec 11 misses

PAPI_L1_DCA 2503.370M/sec 2004 ops

PAPI_FP_OPS 0 ops

DC_MISS 58.712M/sec 47 ops

User time 0.000 secs 1921 cycles

Utilization rate 100.0%

HW FP Ops / Cycles 0.00 ops/cycle

HW FP Ops / User time 0 ops 0.0%peak

HW FP Ops / WCT

Computation intensity 0.00 ops/ref

LD & ST per TLB miss 182.18 ops/miss

LD & ST per D1 miss 42.64 ops/miss

D1 cache hit ratio 97.7%

% TLB misses / cycle 0.1%

==

MPI / mpi_init_

--

Time% 24.1%

Time 0.000001

Imb.Time 0.000000

Imb.Time% 10.7%

170 S–2396–20

Example Catamount Applications [14]

Calls 4

PAPI_TLB_DM 13.413M/sec 8 misses

PAPI_L1_DCA 4590.430M/sec 2738 ops

PAPI_FP_OPS 0 ops

DC_MISS 80.475M/sec 48 ops

User time 0.000 secs 1432 cycles

Utilization rate 89.4%

HW FP Ops / Cycles 0.00 ops/cycle

HW FP Ops / User time 0 ops 0.0%peak

HW FP Ops / WCT

Computation intensity 0.00 ops/ref

LD & ST per TLB miss 342.25 ops/miss

LD & ST per D1 miss 57.04 ops/miss

D1 cache hit ratio 98.2%

% TLB misses / cycle 0.1%

==

MPI / mpi_finalize_

--

Time% 24.1%

Time 0.000001

Imb.Time 0.000000

Imb.Time% 13.2%

Calls 4

PAPI_TLB_DM 21.737M/sec 14 misses

PAPI_L1_DCA 3372.344M/sec 2172 ops

PAPI_FP_OPS 0 ops

DC_MISS 74.527M/sec 48 ops

User time 0.000 secs 1546 cycles

Utilization rate 96.5%

HW FP Ops / Cycles 0.00 ops/cycle

HW FP Ops / User time 0 ops 0.0%peak

HW FP Ops / WCT

Computation intensity 0.00 ops/ref

LD & ST per TLB miss 155.14 ops/miss

LD & ST per D1 miss 45.25 ops/miss

D1 cache hit ratio 97.8%

% TLB misses / cycle 0.2%

==

MPI / mpi_comm_rank_

--

Time% 22.9%

Time 0.000001

Imb.Time 0.000000

S–2396–20 171

Cray XT™ Series Programming Environment User’s Guide

Imb.Time% 11.6%

Calls 4

PAPI_TLB_DM 27.777M/sec 18 misses

PAPI_L1_DCA 3016.878M/sec 1955 ops

PAPI_FP_OPS 0 ops

DC_MISS 61.726M/sec 40 ops

User time 0.000 secs 1555 cycles

Utilization rate 100.0%

HW FP Ops / Cycles 0.00 ops/cycle

HW FP Ops / User time 0 ops 0.0%peak

HW FP Ops / WCT

Computation intensity 0.00 ops/ref

LD & ST per TLB miss 108.61 ops/miss

LD & ST per D1 miss 48.88 ops/miss

D1 cache hit ratio 98.0%

% TLB misses / cycle 0.3%

==

Notes for table 2:

Table option:

-O heap_program

Options implied by table option:

-d IU,IF,NF,FM -b ex,pe

Table 2: Heap Usage at Start and End of Main Program

MB Heap | MB Heap | Heap | Max Free |Experiment=1

Used at | Free at | Not |Object at |PE

Start | Start | Freed | End |

| | MB | |

94.656 | 3875.344 | 0.023 | 3875.321 |Total

|--

| 94.660 | 3875.340 | 0.023 | 3875.316 |pe.0

| 94.654 | 3875.346 | 0.023 | 3875.322 |pe.1

| 94.654 | 3875.346 | 0.023 | 3875.322 |pe.3

| 94.654 | 3875.346 | 0.023 | 3875.322 |pe.2

|==

172 S–2396–20

Example Catamount Applications [14]

Notes for table 3:

Table option:

-O program_time

Options implied by table option:

-d pt -b ex,pe

Table 3: Program Wall Clock Time

Process |Experiment=1

Time |PE

0.014952 |Total

|----------------------

| 0.016712 |pe.1

| 0.016441 |pe.2

| 0.013384 |pe.0

| 0.013271 |pe.3

|======================

Collect information about translation lookaside buffer (TLB) misses
(PAPI_TLB_DM) and generate report program1.rpt4:

% setenv PAT_RT_HWPC PAPI_TLB_DM

% yod -sz 4 program1+pat

hello from pe 1 of 4

hello from pe 2 of 4

hello from pe 3 of 4

hello from pe 0 of 4

PE 1: sizeof(long) = 8

PE 1: The answer is: 42

Experiment data directory written:

/ufs/home/users/user1/pat/program1+pat+2520td

% pat_report program1+pat+2520td > program1.rpt4

Data file 4/4: [....................]

List program1.rpt4:

CrayPat/X: Version 3.1 Revision 609 (xf 556) 01/23/07 11:48:46

Experiment: trace

Experiment data file:

S–2396–20 173

Cray XT™ Series Programming Environment User’s Guide

/ufs/home/users/user1/guide_test/program1+pat+143td/*.xf (RTS)

Original program: /ufs/home/users/user1/guide_test/program1

Instrumented program: /ufs/home/users/user1/guide_test/program1+pat

Program invocation: program1+pat

Number of PEs: 4

Exit Status: 0 PEs: 0-3

Runtime environment variables:

MPICHBASEDIR=/opt/xt-mpt/1.4.48/mpich2-64

MPICH_DIR=/opt/xt-mpt/1.4.48/mpich2-64/P2

PAT_BUILD_ASYNC=0

PAT_ROOT=/opt/xt-tools/craypat/3.1.2/cpatx

PAT_RT_EXPFILE_PER_PROCESS=1

PAT_RT_HWPC=PAPI_TLB_DM

Report time environment variables:

PAT_ROOT=/opt/xt-tools/craypat/3.1.2/cpatx

Report command line options: <none>

Host name and type: sys1 x86_64 2400 MHz

Operating system: catamount 1.0 2.0

Hardware performance counter events:

PAPI_TLB_DM Data translation lookaside buffer misses

User_Cycles Virtual Cycles

Estimated minimum overhead per call of a traced function,

which was subtracted from the data shown in this report

(for raw data, use the option: -s overhead=include):

PAPI_TLB_DM 5.000 misses

User_Cycles 1977.854 cycles

Time 0.827 microseconds

Traced functions:

MAIN_ .../users/user1/guide_test/prog.f90

MPI_Abort ==NA==

174 S–2396–20

Example Catamount Applications [14]

<snip>:

work_ .../users/user1/guide_test/work.c

Notes for table 1:

Table option:

-O profile

Options implied by table option:

-d ti%@0.05,ti,imb_ti,imb_ti%,tr,P -b ex,gr,fu,pe=HIDE

Options for related tables not shown by default:

-O load_balance

-O callers

-O callers+src

-O calltree

-O calltree+src

This table shows only lines with Time% > 0.05.

Percentages at each level are relative

(for absolute percentages, specify: -s percent=a).

Table 1: Profile by Function Group and Function

Experiment=1 / Group / Function / PE='HIDE'

==

Totals for program

--

Time% 100.0%

Time 0.002753

Imb.Time --

Imb.Time% --

Calls 17028

PAPI_TLB_DM 24.252M/sec 67725 misses

User time 0.003 secs 6702061 cycles

Utilization rate 100.0%

% TLB misses / cycle 0.3%

==

USER

S–2396–20 175

Cray XT™ Series Programming Environment User’s Guide

--

Time% 68.5%

Time 0.001885

Imb.Time --

Imb.Time% --

Calls 1012

PAPI_TLB_DM 13.745M/sec 25902 misses

User time 0.002 secs 4522640 cycles

Utilization rate 100.0%

% TLB misses / cycle 0.1%

==

USER / MAIN_

--

Time% 41.7%

Time 0.000786

Imb.Time 0.000098

Imb.Time% 14.7%

Calls 4

PAPI_TLB_DM 7.102M/sec 5570 misses

User time 0.001 secs 1882248 cycles

Utilization rate 99.8%

% TLB misses / cycle 0.1%

==

USER / work_

--

Time% 38.7%

Time 0.000730

Imb.Time 0.002164

Imb.Time% 99.7%

Calls 1000

PAPI_TLB_DM 0.383M/sec 280 misses

User time 0.001 secs 1753760 cycles

Utilization rate 100.0%

% TLB misses / cycle 0.0%

==

USER / exit

--

Time% 19.5%

Time 0.000367

Imb.Time 0.000011

Imb.Time% 3.8%

Calls 4

PAPI_TLB_DM 54.438M/sec 20023 misses

176 S–2396–20

Example Catamount Applications [14]

User time 0.000 secs 882755 cycles

Utilization rate 100.0%

% TLB misses / cycle 0.6%

==

USER / main

--

Time% 0.1%

Time 0.000002

Imb.Time 0.000000

Imb.Time% 2.9%

Calls 4

PAPI_TLB_DM 17.953M/sec 29 misses

User time 0.000 secs 3877 cycles

Utilization rate 97.4%

% TLB misses / cycle 0.2%

==

MPI

--

Time% 0.1%

Time 0.000003

Imb.Time --

Imb.Time% --

Calls 16

PAPI_TLB_DM 14.478M/sec 38 misses

User time 0.000 secs 6299 cycles

Utilization rate 95.2%

% TLB misses / cycle 0.2%

==

MPI / mpi_comm_size_

--

Time% 34.7%

Time 0.000001

Imb.Time 0.000000

Imb.Time% 8.7%

Calls 4

PAPI_TLB_DM 12.902M/sec 12 misses

User time 0.000 secs 2232 cycles

Utilization rate 97.1%

% TLB misses / cycle 0.1%

==

MPI / mpi_init_

--

Time% 24.0%

S–2396–20 177

Cray XT™ Series Programming Environment User’s Guide

Time 0.000001

Imb.Time 0.000000

Imb.Time% 11.8%

Calls 4

PAPI_TLB_DM 7.078M/sec 4 misses

User time 0.000 secs 1356 cycles

Utilization rate 85.5%

% TLB misses / cycle 0.1%

==

MPI / mpi_finalize_

--

Time% 22.9%

Time 0.000001

Imb.Time 0.000000

Imb.Time% 11.8%

Calls 4

PAPI_TLB_DM 14.037M/sec 9 misses

User time 0.000 secs 1539 cycles

Utilization rate 100.0%

% TLB misses / cycle 0.1%

==

MPI / mpi_comm_rank_

--

Time% 18.3%

Time 0.000001

Imb.Time 0.000000

Imb.Time% 9.4%

Calls 4

PAPI_TLB_DM 26.627M/sec 13 misses

User time 0.000 secs 1172 cycles

Utilization rate 96.5%

% TLB misses / cycle 0.3%

==

Notes for table 2:

Table option:

-O heap_program

Options implied by table option:

-d IU,IF,NF,FM -b ex,pe

178 S–2396–20

Example Catamount Applications [14]

Table 2: Heap Usage at Start and End of Main Program

MB Heap | MB Heap | Heap | Max Free |Experiment=1

Used at | Free at | Not |Object at |PE

Start | Start | Freed | End |

| | MB | |

94.656 | 3875.344 | 0.023 | 3875.321 |Total

|--

| 94.660 | 3875.340 | 0.023 | 3875.316 |pe.0

| 94.654 | 3875.346 | 0.023 | 3875.322 |pe.1

| 94.654 | 3875.346 | 0.023 | 3875.322 |pe.3

| 94.654 | 3875.346 | 0.023 | 3875.322 |pe.2

|==

Notes for table 3:

Table option:

-O program_time

Options implied by table option:

-d pt -b ex,pe

Table 3: Program Wall Clock Time

Process |Experiment=1

Time |PE

0.014993 |Total

|----------------------

| 0.018695 |pe.1

| 0.013868 |pe.2

| 0.013706 |pe.0

| 0.013704 |pe.3

|======================

S–2396–20 179

Cray XT™ Series Programming Environment User’s Guide

180 S–2396–20

glibc Functions Supported in CNL [A]

The glibc functions and system calls supported in CNL are listed in Table 9. For
further information, see the man pages.

Note: Some fcntl() commands are not supported for applications that use
Lustre. The supported commands are:

• F_GETFL

• F_SETFL

• F_GETLK

• F_SETLK

• F_SETLKW64

• F_SETLKW

• F_SETLK64

Table 9. Supported glibc Functions for CNL

a64l abort abs access

addmntent alarm alphasort argz_add

argz_add_sep argz_append argz_count argz_create

argz_create_sep argz_delete argz_extract argz_insert

argz_next argz_replace argz_stringify asctime

asctime_r asprintf atexit atof

atoi atol atoll basename

bcmp bcopy bind_textdomain_codeset bindtextdomain

bsearch btowc bzero calloc

catclose catgets catopen cbc_crypt

chdir chmod chown clearenv

clearerr clearerr_unlocked close closedir

confstr copysign copysignf copysignl

creat ctime ctime_r daemon

S–2396–20 181

Cray XT™ Series Programming Environment User’s Guide

daylight dcgettext dcngettext des_setparity

dgettext difftime dirfd dirname

div dngettext dprintf drand48

dup dup2 dysize ecb_crypt

ecvt ecvt_r endfsent endmntent

endttyent endusershell envz_add envz_entry

envz_get envz_merge envz_remove envz_strip

erand48 err errx exit

fchmod fchown fclose fcloseall

fcntl fcvt fcvt_r fdatasync

fdopen feof feof_unlocked ferror

ferror_unlocked fflush fflush_unlocked ffs

ffsl ffsll fgetc fgetc_unlocked

fgetgrent fgetpos fgetpwent fgets

fgets_unlocked fgetwc fgetwc_unlocked fgetws

fgetws_unlocked fileno fileno_unlocked finite

flockfile fnmatch fopen fprintf

fputc fputc_unlocked fputs fputs_unlocked

fputwc fputwc_unlocked fputws fputws_unlocked

fread fread_unlocked free freopen

frexp fscanf fseek fseeko

fsetpos fstat fsync ftell

ftello ftime ftok ftruncate

ftrylockfile funlockfile fwide fwprintf

fwrite fwrite_unlocked gcvt get_current_dir_name

getc getc_unlocked getchar getchar_unlocked

getcwd getdate getdate_r getdelim

getdirentries getdomainname getegid getenv

geteuid getfsent getfsfile getfsspec

getgid gethostname getline getlogin

182 S–2396–20

glibc Functions Supported in CNL [A]

getlogin_r getmntent getopt getopt_long

getopt_long_only getpagesize getpass getpid

getrlimit getrusage gettext gettimeofday

getttyent getttynam getuid getusershell

getw getwc getwc_unlocked getwchar

getwchar_unlocked gmtime gmtime_r gsignal

hasmntopt hcreate hcreate_r hdestroy

hsearch iconv iconv_close iconv_open

imaxabs index initstate insque

ioctl isalnum isalpha isascii

isblank iscntrl isdigit isgraph

isinf islower isnan isprint

ispunct isspace isupper iswalnum

iswalpha iswblank iswcntrl iswctype

iswdigit iswgraph iswlower iswprint

iswpunct iswspace iswupper iswxdigit

isxdigit jrand48 kill l64a

labs lcong48 ldexp lfind

link llabs localeconv localtime

localtime_r lockf longjmp lrand48

lsearch lseek lstat malloc

mblen mbrlen mbrtowc mbsinit

mbsnrtowcs mbsrtowcs mbstowcs mbtowc

memccpy memchr memcmp memcpy

memfrob memmem memmove memrchr

memset mkdir mkdtemp mknod

mkstemp mktime modf modff

modfl mrand48 nanosleep ngettext

nl_langinfo nrand48 on_exit open

opendir passwd2des pclose perror

S–2396–20 183

Cray XT™ Series Programming Environment User’s Guide

pread printf psignal putc

putc_unlocked putchar putchar_unlocked putenv

putpwent puts putw putwc

putwc_unlocked putwchar putwchar_unlocked pwrite

qecvt qecvt_r qfcvt qfcvt_r

qgcvt qsort raise rand

random re_comp re_exec read

readdir readlink readv realloc

realpath regcomp regerror regexec

regfree registerrpc remove remque

rename rewind rewinddir rindex

rmdir scandir scanf seed48

seekdir setbuf setbuffer setegid

setenv seteuid setfsent setgid

setitimer setjmp setlinebuf setlocale

setlogmask setmntent setrlimit setstate

setttyent setuid setusershell setvbuf

sigaction sigaction1 sigaddset sigdelset

sigemptyset sigfillset sigismember siglongjmp

signal sigpending sigprocmask sigsuspend

sleep snprintf sprintf srand

srand48 srandom sscanf ssignal

stat stpcpy stpncpy strcasecmp

strcat strchr strcmp strcoll

strcpy strcspn strdup strerror

strerror_r strfmon strfry strftime

strlen strncasecmp strncat strncmp

strncpy strndup strnlen strpbrk

1 see Section 4.3.5, page 36.

184 S–2396–20

glibc Functions Supported in CNL [A]

strptime strrchr strsep strsignal

strspn strstr strtod strtof

strtok strtok_r strtol strtold

strtoll strtoq strtoul strtoull

strtouq strverscmp strxfrm svcfd_create

swab swprintf symlink syscall

sysconf tdelete telldir textdomain

tfind time timegm timelocal

timezone tmpfile toascii tolower

toupper towctrans towlower towupper

truncate tsearch ttyslot twalk

tzname tzset umask umount

uname ungetc ungetwc unlink

unsetenv usleep utime vasprintf

vdprintf verr verrx versionsort

vfork vfprintf vfscanf vfwprintf

vprintf vscanf vsnprintf vsprintf

vsscanf vswprintf vwarn vwarnx

vwprintf warn warnx wcpcpy

wcpncpy wcrtomb wcscasecmp wcscat

wcschr wcscmp wcscpy wcscspn

wcsdup wcslen wcsncasecmp wcsncat

wcsncmp wcsncpy wcsnlen wcsnrtombs

wcspbrk wcsrchr wcsrtombs wcsspn

wcsstr wcstok wcstombs wcswidth

wctob wctomb wctrans wctype

wcwidth wmemchr wmemcmp wmemcpy

wmemmove wmemset wprintf write

writev xdecrypt xencrypt

S–2396–20 185

Cray XT™ Series Programming Environment User’s Guide

186 S–2396–20

glibc Functions Supported in Catamount [B]

The Catamount port of glibc supports the functions listed in Table 10. For further
information, see the man pages.

Note: Some fcntl() commands are not supported for applications that use
Lustre. The supported commands are:

• F_GETFL

• F_SETFL

• F_GETLK

• F_SETLK

• F_SETLKW64

• F_SETLKW

• F_SETLK64

The Cray XT series system supports two implementations of malloc()for
compute nodes running Catamount: Catamount malloc and GNU malloc.
If your code makes generous use of malloc(), alloc(), realloc(), or
automatic arrays, you may notice improvements in scaling by loading the GNU
malloc module and relinking.

To use GNU malloc, load the gmalloc module:

% module load gmalloc

Entry points in libgmalloc.a (GNU malloc) are referenced before those in
libc.a (Catamount malloc).

Table 10. Supported glibc Functions for Catamount

a64l abort abs access

addmntent alarm alphasort argz_add

argz_add_sep argz_append argz_count argz_create

argz_create_sep argz_delete argz_extract argz_insert

argz_next argz_replace argz_stringify asctime

S–2396–20 187

Cray XT™ Series Programming Environment User’s Guide

asctime_r asprintf atexit atof

atoi atol atoll basename

bcmp bcopy bind_textdomain_codeset bindtextdomain

bsearch btowc bzero calloc

catclose catgets catopen cbc_crypt

chdir chmod chown clearenv

clearerr clearerr_unlocked close closedir

confstr copysign copysignf copysignl

creat ctime ctime_r daemon

daylight dcgettext dcngettext des_setparity

dgettext difftime dirfd dirname

div dngettext dprintf drand48

dup dup2 dysize ecb_crypt

ecvt ecvt_r endfsent endmntent

endttyent endusershell envz_add envz_entry

envz_get envz_merge envz_remove envz_strip

erand48 err errx exit

fchmod fchown fclose fcloseall

fcntl fcvt fcvt_r fdatasync

fdopen feof feof_unlocked ferror

ferror_unlocked fflush fflush_unlocked ffs

ffsl ffsll fgetc fgetc_unlocked

fgetgrent fgetpos fgetpwent fgets

fgets_unlocked fgetwc fgetwc_unlocked fgetws

fgetws_unlocked fileno fileno_unlocked finite

flockfile fnmatch fopen fprintf

fputc fputc_unlocked fputs fputs_unlocked

fputwc fputwc_unlocked fputws fputws_unlocked

fread fread_unlocked free freopen

frexp fscanf fseek fseeko

188 S–2396–20

glibc Functions Supported in Catamount [B]

fsetpos fstat fsync ftell

ftello ftime ftok ftruncate

ftrylockfile funlockfile fwide fwprintf

fwrite fwrite_unlocked gcvt get_current_dir_name

getc getc_unlocked getchar getchar_unlocked

getcwd getdate getdate_r getdelim

getdirentries getdomainname getegid getenv

geteuid getfsent getfsfile getfsspec

getgid gethostname getline getlogin

getlogin_r getmntent getopt getopt_long

getopt_long_only getpagesize getpass getpid

getrlimit getrusage gettext gettimeofday

getttyent getttynam getuid getusershell

getw getwc getwc_unlocked getwchar

getwchar_unlocked gmtime gmtime_r gsignal

hasmntopt hcreate hcreate_r hdestroy

hsearch iconv iconv_close iconv_open

imaxabs index initstate insque

ioctl isalnum isalpha isascii

isblank iscntrl isdigit isgraph

isinf islower isnan isprint

ispunct isspace isupper iswalnum

iswalpha iswblank iswcntrl iswctype

iswdigit iswgraph iswlower iswprint

iswpunct iswspace iswupper iswxdigit

isxdigit jrand48 kill l64a

labs lcong48 ldexp lfind

link llabs localeconv localtime

localtime_r lockf longjmp lrand48

lsearch lseek lstat malloc

S–2396–20 189

Cray XT™ Series Programming Environment User’s Guide

mblen mbrlen mbrtowc mbsinit

mbsnrtowcs mbsrtowcs mbstowcs mbtowc

memccpy memchr memcmp memcpy

memfrob memmem memmove memrchr

memset mkdir mkdtemp mknod

mkstemp mktime modf modff

modfl mrand48 nanosleep ngettext

nl_langinfo nrand48 on_exit open

opendir passwd2des pclose perror

pread printf psignal putc

putc_unlocked putchar putchar_unlocked putenv

putpwent puts putw putwc

putwc_unlocked putwchar putwchar_unlocked pwrite

qecvt qecvt_r qfcvt qfcvt_r

qgcvt qsort raise rand

random re_comp re_exec read

readdir readlink readv realloc

realpath regcomp regerror regexec

regfree registerrpc remove remque

rename rewind rewinddir rindex

rmdir scandir scanf seed48

seekdir setbuf setbuffer setegid

setenv seteuid setfsent setgid

setitimer setjmp setlinebuf setlocale

setlogmask setmntent setrlimit setstate

setttyent setuid setusershell setvbuf

sigaction sigaction1 sigaddset sigdelset

sigemptyset sigfillset sigismember siglongjmp

1 see Section 4.3.5, page 36.

190 S–2396–20

glibc Functions Supported in Catamount [B]

signal sigpending sigprocmask sigsuspend

sleep snprintf sprintf srand

srand48 srandom sscanf ssignal

stat stpcpy stpncpy strcasecmp

strcat strchr strcmp strcoll

strcpy strcspn strdup strerror

strerror_r strfmon strfry strftime

strlen strncasecmp strncat strncmp

strncpy strndup strnlen strpbrk

strptime strrchr strsep strsignal

strspn strstr strtod strtof

strtok strtok_r strtol strtold

strtoll strtoq strtoul strtoull

strtouq strverscmp strxfrm svcfd_create

swab swprintf symlink syscall

sysconf tdelete telldir textdomain

tfind time timegm timelocal

timezone tmpfile toascii tolower

toupper towctrans towlower towupper

truncate tsearch ttyslot twalk

tzname tzset umask umount

uname ungetc ungetwc unlink

unsetenv usleep utime vasprintf

vdprintf verr verrx versionsort

vfork vfprintf vfscanf vfwprintf

vprintf vscanf vsnprintf vsprintf

vsscanf vswprintf vwarn vwarnx

vwprintf warn warnx wcpcpy

wcpncpy wcrtomb wcscasecmp wcscat

wcschr wcscmp wcscpy wcscspn

S–2396–20 191

Cray XT™ Series Programming Environment User’s Guide

wcsdup wcslen wcsncasecmp wcsncat

wcsncmp wcsncpy wcsnlen wcsnrtombs

wcspbrk wcsrchr wcsrtombs wcsspn

wcsstr wcstok wcstombs wcswidth

wctob wctomb wctrans wctype

wcwidth wmemchr wmemcmp wmemcpy

wmemmove wmemset wprintf write

writev xdecrypt xencrypt

192 S–2396–20

PAPI Hardware Counter Presets [C]

The following table describes the hardware counter presets that are available
on the Cray XT series system. Use these presets to construct an event set as
described in Section 11.1.2, page 84.

Table 11. PAPI Presets

Name

Supported
on
Cray XT
series

Derived
from
multiple
counters? Description

PAPI_L1_DCM Yes No Level 1 data cache misses

PAPI_L1_ICM Yes No Level 1 instruction cache misses

PAPI_L2_DCM Yes No Level 2 data cache misses

PAPI_L2_ICM Yes No Level 2 instruction cache misses

PAPI_L3_DCM No No Level 3 data cache misses

PAPI_L3_ICM No No Level 3 instruction cache misses

PAPI_L1_TCM Yes Yes Level 1 cache misses

PAPI_L2_TCM Yes No Level 2 cache misses

PAPI_L3_TCM No No Level 3 cache misses

PAPI_CA_SNP No No Requests for a snoop

PAPI_CA_SHR No No Requests for exclusive access to
shared cache line

PAPI_CA_CLN No No Requests for exclusive access to
clean cache line

PAPI_CA_INV No No Requests for cache line
invalidation

PAPI_CA_ITV No No Requests for cache line
intervention

PAPI_L3_LDM No No Level 3 load misses

PAPI_L3_STM No No Level 3 store misses

PAPI_BRU_IDL No No Cycles branch units are idle

S–2396–20 193

Cray XT™ Series Programming Environment User’s Guide

Name

Supported
on
Cray XT
series

Derived
from
multiple
counters? Description

PAPI_FXU_IDL No No Cycles integer units are idle

PAPI_FPU_IDL No No Cycles floating-point units are idle

PAPI_LSU_IDL No No Cycles load/store units are idle

PAPI_TLB_DM Yes No Data translation lookaside buffer
misses

PAPI_TLB_IM Yes No Instruction translation lookaside
buffer misses

PAPI_TLB_TL Yes Yes Total translation lookaside buffer
misses

PAPI_L1_LDM Yes No Level 1 load misses

PAPI_L1_STM Yes No Level 1 store misses

PAPI_L2_LDM Yes No Level 2 load misses

PAPI_L2_STM Yes No Level 2 store misses

PAPI_BTAC_M No No Branch target address cache
misses

PAPI_PRF_DM No No Data prefetch cache misses

PAPI_L3_DCH No No Level 3 data cache hits

PAPI_TLB_SD No No Translation lookaside buffer
shootdowns

PAPI_CSR_FAL No No Failed store conditional
instructions

PAPI_CSR_SUC No No Successful store conditional
instructions

PAPI_CSR_TOT No No Total store conditional
instructions

PAPI_MEM_SCY Yes No Cycles Stalled Waiting for
memory accesses

PAPI_MEM_RCY No No Cycles Stalled Waiting for
memory reads

194 S–2396–20

PAPI Hardware Counter Presets [C]

Name

Supported
on
Cray XT
series

Derived
from
multiple
counters? Description

PAPI_MEM_WCY No No Cycles Stalled Waiting for
memory writes

PAPI_STL_ICY Yes No Cycles with no instruction issue

PAPI_FUL_ICY No No Cycles with maximum instruction
issue

PAPI_STL_CCY No No Cycles with no instructions
completed

PAPI_FUL_CCY No No Cycles with maximum
instructions completed

PAPI_HW_INT Yes No Hardware interrupts

PAPI_BR_UCN Yes No Unconditional branch instructions

PAPI_BR_CN Yes No Conditional branch instructions

PAPI_BR_TKN Yes No Conditional branch instructions
taken

PAPI_BR_NTK Yes Yes Conditional branch instructions
not taken

PAPI_BR_MSP Yes No Conditional branch instructions
mispredicted

PAPI_BR_PRC Yes Yes Conditional branch instructions
correctly predicted

PAPI_FMA_INS No No FMA instructions completed

PAPI_TOT_IIS No No Instructions issued

PAPI_TOT_INS Yes No Instructions completed

PAPI_INT_INS No No Integer instructions

PAPI_FP_INS Yes No Floating-point instructions

PAPI_LD_INS No No Load instructions

PAPI_SR_INS No No Store instructions

PAPI_BR_INS Yes No Branch instructions

PAPI_VEC_INS Yes No Vector/SIMD instructions

S–2396–20 195

Cray XT™ Series Programming Environment User’s Guide

Name

Supported
on
Cray XT
series

Derived
from
multiple
counters? Description

PAPI_FLOPS Yes Yes Floating-point instructions per
second

PAPI_RES_STL Yes No Cycles stalled on any resource

PAPI_FP_STAL Yes No Cycles in the floating-point unit(s)
are stalled

PAPI_TOT_CYC Yes No Total cycles

PAPI_IPS Yes Yes Instructions per second

PAPI_LST_INS No No Load/store instructions
completed

PAPI_SYC_INS No No Synchronization instructions
completed

PAPI_L1_DCH Yes Yes Level 1 data cache hits

PAPI_L2_DCH Yes No Level 2 data cache hits

PAPI_L1_DCA Yes No Level 1 data cache accesses

PAPI_L2_DCA Yes No Level 2 data cache accesses

PAPI_L3_DCA No No Level 3 data cache accesses

PAPI_L1_DCR No No Level 1 data cache reads

PAPI_L2_DCR Yes No Level 2 data cache reads

PAPI_L3_DCR No No Level 3 data cache reads

PAPI_L1_DCW No No Level 1 data cache writes

PAPI_L2_DCW Yes No Level 2 data cache writes

PAPI_L3_DCW No No Level 3 data cache writes

PAPI_L1_ICH No No Level 1 instruction cache hits

PAPI_L2_ICH No No Level 2 instruction cache hits

PAPI_L3_ICH No No Level 3 instruction cache hits

PAPI_L1_ICA Yes No Level 1 instruction cache accesses

PAPI_L2_ICA Yes No Level 2 instruction cache accesses

PAPI_L3_ICA No No Level 3 instruction cache accesses

196 S–2396–20

PAPI Hardware Counter Presets [C]

Name

Supported
on
Cray XT
series

Derived
from
multiple
counters? Description

PAPI_L1_ICR Yes No Level 1 instruction cache reads

PAPI_L2_ICR No No Level 2 instruction cache reads

PAPI_L3_ICR No No Level 3 instruction cache reads

PAPI_L1_ICW No No Level 1 instruction cache writes

PAPI_L2_ICW No No Level 2 instruction cache writes

PAPI_L3_ICW No No Level 3 instruction cache writes

PAPI_L1_TCH No No Level 1 total cache hits

PAPI_L2_TCH No No Level 2 total cache hits

PAPI_L3_TCH No No Level 3 total cache hits

PAPI_L1_TCA Yes Yes Level 1 total cache accesses

PAPI_L2_TCA No No Level 2 total cache accesses

PAPI_L3_TCA No No Level 3 total cache accesses

PAPI_L1_TCR No No Level 1 total cache reads

PAPI_L2_TCR No No Level 2 total cache reads

PAPI_L3_TCR No No Level 3 total cache reads

PAPI_L1_TCW No No Level 1 total cache writes

PAPI_L2_TCW No No Level 2 total cache writes

PAPI_L3_TCW No No Level 3 total cache writes

PAPI_FML_INS Yes No Floating-point multiply
instructions

PAPI_FAD_INS Yes No Floating-point add instructions

PAPI_FDV_INS No No Floating-point divide instructions

PAPI_FSQ_INS No No Floating-point square root
instructions

PAPI_FNV_INS Yes Yes Floating-point inverse
instructions. This event is
available only if you compile with
the -DDEBUG flag.

S–2396–20 197

Cray XT™ Series Programming Environment User’s Guide

198 S–2396–20

MPI Error Messages [D]

Table 12 lists the MPI error messages you may encounter and suggested
workarounds.

Table 12. MPI Error Messages

Message Description Workaround

Segmentation fault in
MPID_Init()

The application is using all
the memory on the node and
not leaving enough for MPI's
internal data structures and
buffers.

Reduce the amount of
memory used for MPI
buffering by setting the
environment variable
MPICH_UNEX_BUFFER_SIZE
to something greater than 60
MB. If the application uses
scalable data distribution,
run at higher process counts.

MPIDI_PortalsU_Request_PUPE(323):
exhausted unexpected
receive queue buffering
increase via env. var.
MPICH_UNEX_BUFFER_SIZE

The application is sending
too many short, unexpected
messages to a particular
receiver.

Increase the amount
of memory for MPI
buffering using the
MPICH_UNEX_BUFFER_SIZE
environment variable or
decrease the short message
threshold using the
MPICH_MAX_SHORT_MSG_SIZE
variable (default is 128
KB). The default for
MPICH_UNEX_BUFFER_SIZE
is 60,000,000 bytes. The
MPICH_UNEX_BUFFER_SIZE
environment variable
specifies the entire amount
of buffer space for short
unexpected messages.

S–2396–20 199

Cray XT™ Series Programming Environment User’s Guide

Message Description Workaround

pe_rank MPIDI_Portals_Progress:
dropped event on
unexpected receive queue,
increase pe_rank queue size by
setting the environment variable
MPICH_PTL_UNEX_EVENTS

You have used up all the
space allocated for event
queue entries associated with
the unexpected messages
queue. The default size is
20,480 bytes.

You can increase the size of
the unexpected messages
event queue by setting
the environment variable
MPICH_PTL_UNEX_EVENTS
to a value higher than 20,480
bytes.

pe_rank MPIDI_Portals_Progress:
dropped event on "other"
queue,increase pe_rank
queue size by setting
the environment variable
MPICH_PTL_OTHER_EVENTS

You have used up all the
space allocated for the event
queue entries associated with
the "other" queue. This can
happen if the application is
posting many non-blocking
sends of large messages, or
many MPI-2 RMA operations
are posted in a single epoch.
The default size is 2048 bytes.

You can increase the size
of the queue by setting
the environment variable
MPICH_PTL_OTHER_EVENTS
to a value higher than
2048 bytes.

200 S–2396–20

ALPS Error Messages [E]

This appendix documents common ALPS error messages. It is possible for you
to see many more messages than those documented here. Other messages are
generated only if a system error occurs. For all ALPS messages not described
here, see your system administrator.

These messages are generated by the placement scheduler during application
placement and are forwarded to the user through aprun.

Messages that begin with [NID nnn] come from the application shepherds on the
compute nodes and are prefixed with a node ID (NID) to indicate which compute
node sent the message. When general application failures occur, typically only
one message appears from an arbitrary NID assigned to the application. This is
done to prevent flooding the user with possibly thousands of identical messages
if the application fails globally.

Table 13. ALPS Error Messages

Error Description

no XT nodes are configured up A request for the named type of compute node cannot be
satisfied because there are no nodes of that type currently
available.

memory request exceeds 1048575
megabytes

The aprun -m value exceeds the indicated amount. This is
probably a mistake in units by the user because the value far
exceeds any compute node memory size possible to install.

Request exceeds max
[CPUs | memory | nodes]
In user NIDs request exceeds
max [CPUs | memory | nodes]

The allocation request requires more of the named resource
than the configuration can deliver at this time. The second
message will appear instead of the first if the user has
specified the NIDs using the aprun -L option.

At least one command's user NID
list is short

If the aprun -L option is used, the NID list must have at least
as many NID values as the number of nodes the application
requires.

nid NNN appears more than once
in user's nid list

The user has specified an NID list, but the list has at least one
duplicate NID.

[NID nnn] Apid NNNN /proc
readdir timeout alarm occurred.
Application aborted.

A problem on the node prevented the shepherd responsible
for the application to read information from /proc as it must.
Report this to the system administrator.

S–2396–20 201

Cray XT™ Series Programming Environment User’s Guide

Error Description

[NID nnn] Apid NNNN: cannot
execute: reason

A large number of reasons can appear, but the most likely
is exec failed, which usually means the a.out file is
corrupted or is the wrong instruction set to run on this
compute node.

[NID nnn] Apid NNNN killed.
Received node failed or
unavailable event for nid
nnn

The system monitoring software has detected an
unrecoverable error on the named NID. Notification has been
delivered to this NID for handling. The application must be
killed because one or more of the compute nodes on which it
is running have failed.

aprun: Exiting due to errors.
Launch aborted

Typically, this is the final message from aprun before it
terminates when an error has been detected. More detailed
messages should precede this one.

aprun: Apid NNNN close of the
compute node connection [before
| after] app startup barrier

The compute node to which aprun is connected has dropped
its socket connection to aprun without warning. This usually
means the application or a compute node has failed in some
way that prevents normal error messages from being created
or delivered to aprun.

aprun: Application NNNN exit
codes: one to four values
aprun: Application NNNN exit
signals: one to four values

If an application terminates with nonzero exit codes or has
internally generated a signal (such as a memory address
error), the first four of the values detected are reported with
these messages. Both messages will appear if both nonzero
exit codes and signals have occurred in the application.

aprun: Application NNNN
resources: utime uuu, stime
sss

When the application terminates the accumulated user time
(utime) and system time (stime) are forwarded to aprun
and reported with this message.

202 S–2396–20

yod Error Messages [F]

Table 14 describes yod error messages.

Table 14. yod Error Messages

Error Number Description

ERR_NO_MEMORY 1 Out of memory in yod.

ERR_USAGE 2 Command-line usage error.

ERR_HOST_INIT 3 Error in host_cmd_init due to out of memory or
portals. yod internal initialization failed.

ERR_MESH_ALLOC 8 Call to mesh_alloc failed. Error during mesh
initialization.

ERR_LOAD 9 Load error. Cannot load program.

ERR_ABORT 10 User aborted yod. yod was aborted during load
of program.

LD_ERR_SEND 10 Error while sending data to children in fan-out tree.

LD_ERR_NO_HEAP 10 Error allocating heap memory on node.

LD_ERR_TARGET_LENGTH 10 Target supplied location too small for message to
be sent.

ERR_LOAD_FILE 13 Load-file error. Error in use of heterogeneous load
file.

ERR_YOD_USAGE 14 General yod usage error.

ERR_KILL 23 Application was killed. yod got killed after load.

ERR_TARGET 26 Invalid target option; valid targets are linux and
catamount.

ERR_TIME_LIMIT 27 yod time limit expired.

ERR_PREMATURE_EXIT 28 yod received CMD_EXIT too soon. A process exited
prematurely.

ERR_ALARM 29 Load time-out. Alarm signal.

ERR_RCA 30 RCA register failed.

LD_ERR_ABORTED 100 Aborted load.

S–2396–20 203

Cray XT™ Series Programming Environment User’s Guide

Error Number Description

LD_ERR_START 100 First load error.

LD_ERR_NUMNODES 101 Number of nodes was outside of range allowed.

LD_ERR_INTERNAL 102 Internal error.

PCT LD_ERR_CONTROL_PORTAL 103 Error on control portal.

LD_ERR_TARGET_RANK 105 Rank of requesting node is out of expected range.

LD_ERR_TARGET_PORTAL 106 Target portal number is out of expected range.

LD_ERR_PULL 108 Error while pulling data from parent in fan-out
tree.

LD_ERR_VERSION 110 Version mismatch.

LD_ERR_NODE_TIMEOUT 111 Time-out while communicating with node.

LD_ERR_PORTALS_UID 112 Portals UID mismatch.

LD_ERR_PROTOCOL_ERROR 113 General load-protocol error.

LD_ERR_BAD_PCT_MSG_TYPE 114 Unexpected message type.

LD_ERR_EXEC_LOAD 115 Error loading executable file.

LD_ERR_WRONG_NID 116 Received response from wrong node ID.

LD_ERR_WRONG_RECV_LENGTH 117 Received load with wrong length.

LD_ERR_PCT_EXIT 118 PCT exited during load.

LD_ERR_NIDPID 119 Node ID map was built or distributed incorrectly.

ERROR_PCT_FAULT 120 PCT fault.

ERROR_SET_CACHE 121 PCT failed to initialize processor.

ERROR_INIT_REGION 122 PCT failed to initialize memory region.

ERROR_APP_TIMER 123 Application Timer Error.

ERROR_NO_MEM 124 Out of memory on node.

ERROR_NO_MEM_FOR_BSS 125 Text size is too big.

ERROR_NO_MEM_FOR_HEAP 126 Not enough memory for heap on node.

ERROR_NO_MEM_FOR_PROCESS 127 Not enough memory for process.

ERROR_HEAP_SIZE_TOO_SMALL 128 Heap size is too small on node.

ERROR_NO_SMP 129 Catamount virtual node mode is unavailable.

ERROR_VA_OVERLAP 130 Virtual addresses overlap kernel/PCT addresses.

204 S–2396–20

yod Error Messages [F]

Error Number Description

ERROR_PRIORITY 131 PCT could not set processor priority.

ERROR_PORTALS 132 Portals Error.

ERROR_BAD_ELF_FILE 133 Bad ELF file.

ERROR_ELF_DYNAMIC_LOAD 134 No dynamic load support for ELF files.

ERROR_ELF_GENERIC 135 ELF file error.

ERROR_INVALID_TARGET 136 Invalid target.

ERROR_MSG_RCV_CACHE_OVERFLOW 137 Overflow in message received cache.

ERROR_TOO_MANY_PARAMS 138 Too many parameters passed to application

ERROR_TOO_MANY_PORTALS 139 Too many portals were allocated.

ERROR_TOO_MANY_PROCS 140 Too many processes.

S–2396–20 205

Cray XT™ Series Programming Environment User’s Guide

206 S–2396–20

Glossary

Catamount

The operating system kernel developed by Sandia National Laboratories and
implemented to run on Cray XT series compute nodes. See also compute node.

Catamount Virtual Node (CVN)

The Catamount kernel enhanced to run on dual-core Cray XT series compute
nodes.

CNL

CNL is a Cray XT series compute node operating system. CNL provides a set of
supported system calls. CNL provides many of the operating system functions
available through the service nodes, although some functionality has been
removed to improve performance and reduce memory usage by the system.

compute node

Runs a kernel and performs only computation. System services cannot run on
compute nodes. See also node; service node.

compute processor allocator (CPA)

A program that coordinates with yod to allocate processing elements.

CrayDoc

Cray's documentation system for accessing and searching Cray books, man
pages, and glossary terms from a web browser.

deferred implementation

The label used to introduce information about a feature that will not be
implemented until a later release.

dual-core processor

A processor that combines two independent execution engines ("cores"), each
with its own cache and cache controller, on a single chip.

S–2396–20 207

Cray XT™ Series Programming Environment User’s Guide

login node

The service node that provides a user interface and services for compiling and
running applications.

Modules

A package on a Cray system that allows you to dynamically modify your user
environment by using module files. (This term is not related to the module
statement of the Fortran language; it is related to setting up the Cray system
environment.) The user interface to this package is the module command, which
provides a number of capabilities to the user, including loading a module file,
unloading a module file, listing which module files are loaded, determining
which module files are available, and others.

node

For UNICOS/lc systems, the logical group of processor(s), memory, and network
components acting as a network end point on the system interconnection
network.

node ID

A decimal number used to reference each individual node. The node ID (NID)
can be mapped to a physical location.

service node

A node that performs support functions for applications and system services.
Service nodes run SUSE LINUX and perform specialized functions. There are six
types of predefined service nodes: login, IO, network, boot, database, and syslog.

system interconnection network

The high-speed network that handles all node-to-node data transfers.

UNICOS/lc

The operating system for Cray XT series systems.

208 S–2396–20

Index

64-bit library
PathScale, 25
PGI, 23

A
Accounts, 65
ACML, 2, 16

required PGI linking option, 41
AMD Core Math Library, 16
APIs, 13
Applications

launching, 53, 59
running in parallel, 95, 133

aprun
I/O handling, 58
launching applications, 53

aprun command, 3, 53
Authentication, 7–8

B
Batch job

submitting through PBS Pro, 67
using a script to create, 110, 151

Batch processing, 3
BLACS, 2, 13–14
BLAS, 2, 13, 16
Buffering

Fortran I/O, 32

C
C compiler, 1
C++ compiler, 1
C++ I/O

changing default buffer size, 32
specifying a buffer, 32

Catamount
C run time functions in, 187
C++ I/O, 32

glibc functions supported, 30, 187
I/O, 31
I/O handling, 64
programming considerations, 30
signal handling, 64
stderr, 31
stdin, 31
stdout, 31

Catamount nodes
report showing status, 47

Catamount Virtual Node (CVN), 60
CNL, 1, 53

C run time functions in, 181
glibc functions supported, 181
I/O, 27
I/O handling, 58
programming considerations, 23, 26
signal handling, 58
stderr, 27
stdin, 27
stdout, 27

CNL applications
requesting resources, 53

CNL nodes
report showing status, 47

cnselect command , 3
Compiler

C, 1
C++, 1
Fortran, 1

Complier commands, 39
Compute node kernel

report showing status, 47
Compute node operating system

Catamount, 1
CNL, 1

Compute nodes
managing from an MPI program, 57, 64, 69

S–2396–20 209

Cray XT™ Series Programming Environment User’s Guide

selecting, 3
Compute Processor Allocator (CPA), 59
Core files, 36
Cray Apprentice2, 3, 88
Cray MPICH2, 1, 18

limitations, 18
Cray SHMEM, 20

atomic memory operations, 20
Cray XT-LibSci, 2, 13
CrayPat, 3, 84

D
Debugging, 73

gdb
See xtgdb

GNU debugger, 81
using TotalView, 74

Dual-core processor, 60
CNL jobs, 53

Dynamic linking, 26

E
Endian

See Little endian
Event set

how to create in PAPI, 84
Example programs

Catamount, 133
CNL, 95

Examples
combining results with MPI, 100, 137

F
FFT, 2, 16–17
FFTW, 2, 17
File system

Lustre, 3, 11
Fortran compiler, 1
Fortran STOP message, 24

G
GCC

using OpenMP, 22
GCC compilers, 1, 39, 42
gdb debugger

See GNU debugger
getpagesize()

Catamount implementation of, 30
glibc, 2, 13

Catamount, 30
run time functions implemented in

Catamount, 187
run time functions implemented in CNL, 181
support in Catamount, 30
support in CNL, 26

GNU C library, 2, 13
GNU compilers, 39, 42
GNU debugger, 81
GNU Fortran libraries, 2

H
Hardware counter presets

PAPI, 193
Hardware performance counters, 84

I
I/O

stdio performance, 33
stride functions, 34

I/O buffering
IOBUF library, 33

I/O performance
Fortran buffer size, 32

I/O support in Catamount, 31
I/O support in CNL, 27
Instrumenting a program, 84
IRT

See Iterative Refinement Toolkit
IRT (Iterative Refinement Toolkit), 2
Iterative Refinement Toolkit, 13
Iterative Refinement Toolkit (IRT), 15

J
Job accounting, 65

210 S–2396–20

Index

Job launch
MPMD application, 57

Job scripts, 67
Job status, 70
Jobs

running on Catamount, 59
running on CNL, 53

L
LAPACK, 2, 13, 16
Launching Catamount applications, 59
Launching CNL applications, 53
Launching jobs

using aprun, 3
using yod, 3

LD_PRELOAD environment variable, 26
Libraries, 13
Library

ACML, 2, 16
BLACS, 2, 13–14
BLAS, 2, 13, 16
Cray MPICH2, 18
Cray XT-LibSci, 13
FFT, 2, 16
FFTW, 2
glibc, 13
GNU C, 2
IRT (Iterative Refinement Toolkit), 2
Iterative Refinement Toolkit, 15
LAPACK, 2, 13, 16
LibSci, 2
ScaLAPACK, 2, 13–14
SuperLU, 2, 13, 16

LibSci
See Cray XT-LibSci

Little endian, 26
Loadfile

launching MPMD applications with, 62
Lustre, 3

programming considerations, 11
Lustre library, 11

M
malloc(), 31

Catamount implementation of, 30
Math transcendental library routines, 2, 17
Message passing, 18
Message Passing Interface, 1
module command, 10
Modules, 9
MPI, 1, 18

64-bit library, 23, 25
managing compute nodes from, 57, 64, 69
running program interactively, 95, 133
running program under PBS Pro, 108, 149

MPICH2
limitations, 18

MPMD applications
using aprun, 57
using yod, 62

N
Node

availability, 47

O
OpenMP, 2, 22
Optimization, 91

P

PAPI, 83
counter presets for constructing an event

set, 193
high-level interface, 83
low-level interface, 84

PAPI library, 84
Parallel programming model

MPICH2, 1
OpenMP, 2
SHMEM, 2

passwordless logins, 7
passwordless ssh, 7
passwords, 7

S–2396–20 211

Cray XT™ Series Programming Environment User’s Guide

PATH variable
how to modify, 11

PathScale
using OpenMP, 22

PathScale compilers, 1, 43
PBS Pro, 3, 67
Performance analysis

Cray Apprentice2, 88
CrayPat, 84
PAPI, 83

Performance API (PAPI), 2
PGI

using OpenMP, 22
PGI compilers, 1, 39–40

limitations, 23
Portals interface, 18
Process Control Thread (PCT), 59
Programming considerations

Catamount, 23
CNL, 23
general, 23

Programming Environment, 1
Project accounting, 65

Q
qdel command, 71
qstat command, 70
qsub command, 68

R
Random number generators, 2, 17
Reports

CrayPat, 84
RSA authentication, 7

with passphrase, 8
without passphrase, 9

Running applications
using aprun, 3
using yod, 3

Running Catamount applications, 59
Running CNL applications, 53

S
ScaLAPACK, 2, 13–14
Scientific libraries, 13
Script

creating and running a batch job with, 151
Scripts

creating and running a batch job with, 110
PBS Pro, 67

Secure shell, 7
Shared libraries, 26
SHMEM, 2

64-bit library, 23, 25
Signal handling, 36, 58, 64
Single-core processor, 59

CNL jobs, 53
ssh, 7
stderr, 27, 31
stdin, 27, 31
stdio

performance, 33
stdout, 27, 31
STOP message, 24
SuperLU, 2, 13, 16

T
Timers

Catamount support for, 30
Timing measurements, 35
TotalView, 73–74

Cray specific functions, 81

U
UNICOS/lc

Catamount, 1
CNL, 1

User environment
setting up, 7

X
xtgdb debugger

See GNU debugger
xtprocadmin, 47

212 S–2396–20

Index

xtshowcabs, 47
xtshowcabs command, 3
xtshowmesh, 47
xtshowmesh command, 3

Y
yod, 59

I/O handling, 64
yod command, 3

S–2396–20 213

	Cray XT™ Series Programming Environment User's Guide
	New Features
	Preface
	Accessing Product Documentation
	Conventions
	Reader Comments
	Cray User Group

	Introduction [1]
	1.1 The Cray XT Series System Environment
	1.2 The Cray XT Series Programming Environment
	1.3 Documentation Included with This Release

	Setting Up the User Environment [2]
	2.1 Setting Up a Secure Shell
	2.1.1 RSA Authentication with a Passphrase
	2.1.2 RSA Authentication without a Passphrase

	2.2 Using Modules
	2.3 Modifying the PATH Variable
	2.4 Lustre File System

	Libraries and APIs [3]
	3.1 C Language Run Time Library
	3.2 Cray Scientific Library
	3.2.1 BLAS and LAPACK
	3.2.2 ScaLAPACK and BLACS
	3.2.3 Iterative Refinement Toolkit
	3.2.4 SuperLU

	3.3 AMD Core Math Library
	3.4 FFTW Libraries
	3.5 PETSc Library
	3.6 Cray MPICH2 Message Passing Library
	3.7 Cray SHMEM Library
	3.8 OpenMP Library

	Programming Considerations [4]
	4.1 General Programming Considerations
	4.1.1 PGI Compilers
	4.1.1.1 Default MPICH2 and SHMEM Libraries
	4.1.1.2 Unsupported C++ Header Files
	4.1.1.3 Restrictions on Large Data Objects
	4.1.1.4 The FORTRAN STOP Message
	4.1.1.5 Unsupported Compiler Command Options
	4.1.1.6 Suppressing Vectorization

	4.1.2 PGI Debugger
	4.1.3 PathScale Fortran Compiler
	4.1.4 Little-endian Support
	4.1.5 Portals Message Size Limit
	4.1.6 Shared Libraries

	4.2 CNL Programming Considerations
	4.2.1 CNL glibc Functions
	4.2.2 I/O Support
	4.2.3 External Connectivity
	4.2.4 Timing Functions
	4.2.5 Signal Support
	4.2.6 Core Files
	4.2.7 Page Size
	4.2.8 Resource Limits
	4.2.9 One Application Per Node Limitation
	4.2.10 Parallel Programming Models
	4.2.11 Modified Copy-on-write Process

	4.3 Catamount Programming Considerations
	4.3.1 Catamount glibc Functions
	4.3.2 I/O Support
	4.3.2.1 Improving Fortran I/O Performance
	4.3.2.2 Improving C++ I/O Performance
	4.3.2.3 Improving stdio Performance
	4.3.2.4 Improving Large File, Sequential I/O Performance
	4.3.2.5 Using Stride I/O Functions to Improve Performance
	4.3.2.6 Reducing Memory Fragmentation

	4.3.3 External Connectivity
	4.3.4 Timing Functions
	4.3.5 Signal Support
	4.3.6 Core Files
	4.3.7 Page Size
	4.3.8 Resource Limits
	4.3.9 Parallel Programming Models

	Compiler Overview [5]
	5.1 Setting Your Target Architecture
	5.2 Using Compilers
	5.2.1 Using PGI Compilers
	5.2.2 Using GNU Compilers
	5.2.3 Using PathScale Compilers

	Getting Compute Node Status [6]
	Running CNL Applications [7]
	7.1 aprun Command
	7.2 apstat Command
	7.3 cnselect Command
	7.4 Memory Available to CNL Applications
	7.5 Launching an MPMD Application
	7.6 Managing Compute Node Processors from an MPI Program
	7.7 Input and Output Modes under aprun
	7.8 Signal Handling under aprun

	Running Catamount Applications [8]
	8.1 yod Command
	8.2 cnselect Command
	8.3 Memory Available to Catamount Applications
	8.4 Launching an MPMD Application
	8.5 Managing Compute Node Processors from an MPI Program
	8.6 Input and Out Modes under yod
	8.7 Signal Handling under yod
	8.8 Associating a Project or Task with a Job Launch

	Using PBS Pro [9]
	9.1 Creating Job Scripts
	9.2 Submitting Batch Jobs
	9.2.1 Using aprun with qsub
	9.2.2 Using yod with qsub

	9.3 Terminating Failing Processes in an MPI Program
	9.4 Getting Jobs Status
	9.5 Removing a Job from the Queue

	Debugging an Application [10]
	10.1 Troubleshooting Catamount Application Failures
	10.2 Using the TotalView Debugger
	10.2.1 Debugging an Application
	10.2.2 Debugging a Core File
	10.2.3 Attaching to a Running Process
	10.2.4 Altering Standard I/O
	10.2.5 TotalView Limitations for Cray XT Series Systems

	10.3 Using the GNU gdb Debugger

	Performance Analysis [11]
	11.1 Using the Performance API
	11.1.1 Using the High-level PAPI Interface
	11.1.2 Using the Low-level PAPI Interface

	11.2 Using the Cray Performance Analysis Tool
	11.2.1 Tracing and Sampling Experiments

	11.3 Using Cray Apprentice2

	Optimization [12]
	12.1 Using Compiler Optimization Options
	12.2 Optimizing Applications Running on Dual-core Processors
	12.2.1 MPI and SHMEM Applications Running under Catamount
	12.2.2 MPI and SHMEM Applications Running under CNL

	Example CNL Applications [13]
	Example Catamount Applications [14]
	glibc Functions Supported in CNL [A]
	glibc Functions Supported in Catamount [B]
	PAPI Hardware Counter Presets [C]
	MPI Error Messages [D]
	ALPS Error Messages [E]
	yod Error Messages [F]
	Glossary
	Index
	List of Tables
	Table 1. Manuals and Man Pages Included with This Release
	Table 2. setvbuf3f() Arguments
	Table 3. PGI Compiler Commands
	Table 4. GNU Compiler Commands
	Table 5. PathScale Compiler Commands
	Table 6. aprun versus qsub Options
	Table 7. yod versus qsub Options
	Table 8. RPCs to yod
	Table 9. Supported glibc Functions for CNL
	Table 10. Supported glibc Functions for Catamount
	Table 11. PAPI Presets
	Table 12. MPI Error Messages
	Table 13. ALPS Error Messages
	Table 14. yod Error Messages

	List of Examples
	Example 1: Running a ScaLAPACK application
	Example 2: Running an ScaLAPACK hybrid application
	Example 3: Basics of running a CNL application
	Example 4: Basics of running an MPI application
	Example 5: Running an MPI work distribution program
	Example 6: Combining results from all processors using MPI
	Example 7: Using the Cray shmem_put function
	Example 8: Using the Cray shmem_get function
	Example 9: Turning off the PGI FORTRAN STOP message
	Example 10: Running an MPI/OpenMP program
	Example 11: Using a PBS Pro job script
	Example 12: Running an MPI program under PBS Pro
	Example 13: Running an MPI_REDUCE program under PBS Pro
	Example 14: Using a script to create and run a batch job
	Example 15: Running multiple sequential applications
	Example 16: Running multiple parallel applications
	Example 17: Using the high-level PAPI interface
	Example 18: Using the low-level PAPI interface
	Example 19: Using basic CrayPat functions
	Example 20: Using hardware performance counters
	Example 21: Basics of running a Catamount application
	Example 22: Basics of running an MPI application
	Example 23: Running an MPI work distribution program
	Example 24: Combining results from all processors using MPI
	Example 25: Using the Cray shmem_put function
	Example 26: Using the Cray shmem_get function
	Example 27: Turning off the PGI FORTRAN STOP message
	Example 28: Using dclock() to calculate elapsed time
	Example 29: Specifying a buffer for I/O
	Example 30: Changing default buffer size for I/O to file streams
	Example 31: Improving performance of stdout
	Example 32: Using a PBS Pro job script
	Example 33: Running an MPI program under PBS Pro
	Example 34: Running an MPI_REDUCE program under PBS Pro
	Example 35: Using a script to create and run a batch job
	Example 36: Running multiple sequential applications
	Example 37: Running multiple parallel applications
	Example 38: Using xtgdb to debug a program
	Example 39: Using the high-level PAPI interface
	Example 40: Using the low-level PAPI interface
	Example 41: Using basic CrayPat functions
	Example 42: Using hardware performance counters

